• Title/Summary/Keyword: compacted materials

Search Result 182, Processing Time 0.022 seconds

Variation of Lattice Constant in Ni-W and Ni-W-Cu Alloys for YBCO Coated Conductor (YBCO 초전도 박막 선재용 Ni-W 및 Ni-W-Cu 합금의 격자상수 변화)

  • Kim Min-Woo;Jung Kyu-Dong;Jun Byung-Hyuk;Kim Hyoung-Seop;Kim Chan-Joong
    • Progress in Superconductivity
    • /
    • v.7 no.1
    • /
    • pp.64-68
    • /
    • 2005
  • We fabricated Ni-based alloy substrates for YBCO coated conductor using powder metallurgy. Tungsten and copper were selected as alloy elements due to their mutual solubility to the base element of nickel. The alloying elements were mixed with nickel using ball milling and dried in air. The powder mixtures were packed in a rubber mold, cold isostatic pressed 200 MPa and made into rods. The compacted rods were sintered at $1150^{\circ}C$ for 6 hours for densification. It was confirmed by neutron diffraction experiment that W and Cu atoms made complete solid solution with Ni. Lattice constant of nickel alloy increased by $0.004{\AA}$ for 1at. $\%$ W in Ni-W alloy, $0.0006{\AA}$ for 1 at. $\%$ Cu in Ni-W-Cu alloy.

  • PDF

Evaluation of the Reactivity of Bulk Nano Ni/Al Powder Manufactured by Shock Compaction Process (충격압분공정으로 제조된 나노 니켈/알루미늄 혼합분말재의 특성 평가)

  • Kim, W.;Ahn, D.H.;Park, L.J.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.4
    • /
    • pp.216-221
    • /
    • 2017
  • Recently, interest in multifunctional energetic structural materials (MESMs) has grown due to their multifunctional potential, especially in military applications. However, there are few studies about extrinsic factors that govern the reactivity of MESMs. In this paper, a shock compaction process was performed on the nano Ni/Al-mixed powder to investigate the effect of particle size on the shock reaction condition. Additionally, heating the statically compacted specimen was also performed to compare the mechanical properties and microstructure between reacted and unreacted material. The results show that the agglomerated structure of nanopowders interrupts the reaction by reducing the elemental boundary. X-ray diffraction analysis shows that the NiAl and $Ni_3Al$ intermetallics are formed on the reacted specimen. The microhardness results show that the $Ni_3Al$ phase has a higher hardness than NiAl, but the portion of $Ni_3Al$ in the reacted specimen is minor. In conclusion, using Ni/Al composites as a reactive material should focus on energetic use.

Effect of Multi-Sized Powder Mixture on Solid Casting and Sintering of Alumina

  • Cho, Kyeong-Sik;Lee, Hyun-Kwuon;Min, Jae-Hong
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.352-357
    • /
    • 2018
  • The slip casting process is widely used to make green bodies from ceramic slips into dense compacts with homogeneous microstructure. However, stress may be generated inside the green body during drying, and can lead to cracking and bending during sintering. When starting from the spherical powders with mono-size distribution to make the close packed body, interstitial voids on octahedral and tetrahedral sites are formed. In this research, experiments were carried out with powders of three size types (host powder (H), octahedral void filling powder (O) and tetrahedral void filling powder (T)) controlled for average particle size by milling from two commercial alumina powders. Slips were prepared using three different powder batches from H only, H+O or H+O+T mixed powders. After manufacturing green compacts by solid-casting, compacts were dried at constant temperature and humidity and sintered at $1650^{\circ}C$. Alumina samples fabricated from the multi-sized powder mixture had improved compacted and sintered densities.

A Feasibility Study on the Use of Liner and Cover Materials Using Sewage Sludge (하수슬러지의 차수재 및 복토재로의 이용타당성에 관한 연구)

  • 유남재;김영길;박병수;정하익
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.43-71
    • /
    • 1999
  • This research is an experimental work of developing a construction material using municipal wastewater sludge as liner and cover materials for waste disposal landfill. Weathered granite soil and flyash, produced as a by-product in the power plant, were used as the primary additives to improve geotechnical engineering properties of sludge. For secondary additives, bentonite and cement were mixed with sludge to decrease the permeability and to increase the shear strength, respectively. Various laboratory test required to evaluate the design criteria for liner and cover materials, were carried out by changing the mixing ratio of sludge with the additives. Basic soil properties such as specific gravity, grain size distribution, liquid and plastic limits were measured to analyze their effects on permeability, compaction, compressibility and shear strength properties of mixtures. Laboratory compaction tests were conducted to find the maximum dry densities and the optimum moisture contents of mixtures, and their effectiveness of compaction in field was consequently evaluated. Permeability tests of variable heads with compacted samples, and the stress-controlled consolidation tests with measuring permeabilities of samples during consolidation process were performed to obtain permeability, and to find the compressibility as well as consolidational coefficients of mixtures, respectively. To evaluate the long term stability of sludges, creep tests were also conducted in parallel with permeability tests of variable heads. On the other hand, for the compacted sludge decomposed for a month, permeability tests were carried out to investigate the effect of decomposition of organic matters in sludges on its permeability. Direct shear tests were performed to evaluate the shear strength parameters of mixed sludge with weathered granite, flyash and bentonite. For the mixture of sludge with cement, unconfined compression tests were carried out to find their strength with varying mixing ratio and curing time. On the other hand, CBR tests for compacted specimen were also conducted to evaluate the trafficability of mixtures. Various test results with mixtures were assessed to evaluate whether their properties meet the requirements as liner and cover materials in waste disposal landfill.

  • PDF

A Study on the Effect of Organic Permeant on Permeability of a Natural Clay (유기투과물이 자연점토의 투수성에 미치는 영향에 대한 연구)

  • 전상옥;장병우;우철웅;박영곤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.4
    • /
    • pp.98-105
    • /
    • 1997
  • Compacted clay materials are often used to form barriers for waste disposal by means of landfill. The performance of clay barrier depends on its permeability characteristics under the site environments. The study discusses permeability characteristics of 4 types of permeants through a compacted clayey soil. Permeabilities are measured using the modified rigid-wall permeater and with water, PEG, Ethanol, and TCE, ranging 80 to 3.4 of dielectric constants. Results of the study are as follows : 1) Absolute permeabilities of Ethanol and TCE that their dielectric constants are lower than that of water are $K=1.0{\times} 10^{-12} cm^2$, and $5.8{\times} 10^{-12} cm^2$, respectively, that is, 1.67, and 9.67 times of permeability of water, respectively. Absolute permeability and dielectric constant of water are $K=6{\times} 10^{-13} cm^2$, and 80, respectively. 2) Changes in absolute permeability of Ethanol and TCE converge to a constant after 3.5 pore volume of permeant flows through the clay sample. This can be explained that diffuse double layer of clay is no longer reacted with permeants and contracted their pores. However there is no change in absolute permeability when water is used as a per-meant. 3) It is found that absolute permeability in reversely proportional to the value of dielectric constant of the permeants. Change in absolute permeability of the permeants with 40 or over of dielectric constant is not significant. However change in absolute permeability of the permeant with 30 or lower dielectric constant is abruptly increased. 4) A lower absolute permeability of PEG is found because of its high viscosity.

  • PDF

The Strength and Durability of Compacted Coal Ash with Proper Mixing Ratio of Fly Ash to Bottom Ash (비회와 저회의 적정 혼합비로 다짐한 석탄회의 강도와 내구성)

  • Chun, Byung Sik;Lee, Eun Soo;Koh, Yong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.207-213
    • /
    • 1992
  • In this study, the strength and durability of compacted coal ash with proper mixing ratio of fly ash to bottom ash, such as 5:5 or 6:4, are examined for use of highway embankment and subgrade materials. Right after compaction, the strength of bituminous mixed coal ash is greater than that of anthracite mixed coal ash. The distinguished increase of strength with curing time is observed only in Ho-nam mixed coal ash that contains a lot of free lime, and the strength increase with curing time are not seen or little in the others. The durability in sinking test is good also in Ho-nam mixed coal ash, but satisfactory by adding 2% cement in the others. And it is seen that the effects of the strength increase with adding cement are greater in coal ash with proper mixing ratio than in fly ash or bottom ash respectly.

  • PDF

Mechanical properties and durability of roller-compacted concrete incorporating powdered and granulated blast furnace slag in frost regions

  • Morteza Madhkhan;Mohsen Shamsaddini;Amin Tanhadoust
    • Structural Engineering and Mechanics
    • /
    • v.90 no.5
    • /
    • pp.467-480
    • /
    • 2024
  • The mechanical properties and durability of concrete pavements may be degraded in extreme situations, resulting in the need for partial repair or total replacement. During the past few decades, there has been a growing body of research on substituting a portion of Portland cement with alternative cementitious materials for improving concrete properties. In this study, two different configurations of powdered and granulated blast furnace slag were implemented, replacing fine aggregates (by 12 wt.%) and Portland cement (by 0, 20, 40, and 60 wt.%) in the making of roller-compacted concrete (RCC) mixes. The specimens were fabricated to investigate the mechanical properties and durability specifications, involving freeze-thaw, salt-scaling, and water absorption resistance. The experimental results indicated that the optimum mechanical properties of RCC mixes could be achieved when 20-40 wt.% of powdered slag was added to concrete mixes containing slag aggregates. Accordingly, the increases in compressive, tensile, and flexural strengths were 45, 50, and 28%, in comparison to the control specimen at the age of 90 days. Also, incorporating 60 wt.% of powdered slag gave rise to the optimum mix plan in terms of freeze-thaw resistance such that a negligible strength degradation was experienced after 300 cycles. In addition, the optimal moisture content of the proposed RCC mixtures was measured to be in the range of 5 to 6.56%. Furthermore, the partial addition of granulated slag was found to be more advantageous than using entirely natural sand in the improvement of the mechanical and durability characteristics of all mixture plans.

Applicability of SRSL(Self-Recovering Sustainable Liner) to the Landfill Final Cover System (SRSL(Self Recovering Sustainable Liner)재의 매립지 최종복토층에 대한 활용성 검토)

  • Kwon, Oh-Jung;Seo, Min-Woo;Hong, Soo-Jung;Park, Jun-Boum;Park, Soo-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.453-460
    • /
    • 2004
  • To prevent penetration of rainwater into the landfill site is the main purpose of the final cover in landfill sites. Conventional designs of landfill covers uses geotextiles such as geomembrane and GCL, and clay liners to lower the permeability of final covers of landfill sites. However, differential settlement and the variation of temperature in landfill sites cause the development of cracks or structural damage inside the final cover and it is also difficult to obtain clay - the main material of the compacted clay liner in Korea. Thus the former final cover system that suggests geomembrane and GCL or compacted clay liner has several limitations. Therefore, an alternative method is necessary and one of them is the application of SRSL(self-Recovering Sustainable Liner) material. SRSL is two different layers consist of individual materials that react with each other and form precipitates, and with this process lowers the permeability of the landfill final cover. SRSL generally is made up of two layers, so that when a internal crack occurs the reactants of the two layers migrate towards the crack and heal it by forming another liner. In this study the applicability of SRSL material for landfill final cover was examined by performing; (1) jar test to verify the formation of precipitate in the mixture of each reactants, (2) falling head test considering the field stress in order to confirm the decrease of permeability or prove that the hydraulic condctivity is lower than the regulations, (3) compression tests to judge weather if the strength satisfies the restricts for landfills, (4) freeze/thaw test to check the applicability of SRSL for domestic climate. In addition, the application of waste materials in the environmental and economical aspect was inspected, and finally the possibility of secondary contamination due to the waste materials was examined by performing elution tests.

  • PDF

Densification of Mo Nanopowders by Ultra High Pressure Compaction (초고압 성형을 통한 Mo 나노 분말의 치밀화)

  • Ahn, Chi Hyeong;Choi, Won June;Park, Chun Woong;Lee, Seung Yeong;Kim, Young Do
    • Korean Journal of Materials Research
    • /
    • v.28 no.3
    • /
    • pp.166-173
    • /
    • 2018
  • Molybdenum (Mo) is one of the representative refractory metals for its high melting point, superior thermal conductivity, low density and low thermal expansion coefficient. However, due to its high melting point, it is necessary for Mo products to be fabricated at a high sintering temperature of over $1800-2000^{\circ}C$. Because this process is expensive and inefficient, studies to improve sintering property of Mo have been researched actively. In this study, we fabricated Mo nanopowders to lower the sintering temperature of Mo and tried to consolidate the Mo nanopowders through ultra high pressure compaction. We first fabricated Mo nanopowders by a mechano-chemical process to increase the specific surface area of the Mo powders. This process includes a high-energy ball milling step and a reduction step in a hydrogen atmosphere. We compacted the Mo nanopowders with ultra high pressure by magnetic pulsed compaction (MPC) before pressureless sintering. Through this process, we were able to improve the green density of the Mo compacts by more than 20 % and fabricate a high density Mo sintered body with more than a 95 % sintered density at relatively low temperature.

Psychological Character Analysis of Pavement Materials (포장재료의 심리적 특성 분석)

  • Kim Dae-Hyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.5
    • /
    • pp.43-51
    • /
    • 2004
  • Recently, the importance of choosing correct pavement materials has been increasing in urban spaces and streets. Much research regarding the pavement theory and construction method have been conducted, but analysis in terms of human psychological character has not yet been performed. The purpose of this study is to investigate the psychological characters to 12 pavement materials, that are commonly used in our urban spaces and streets. The results of the psychological character for each pavement material can be summarized as follows: 1. The psychological characters to each pavement material were as follows: ① Clay embodies a natural, traditional, soft and intimate psychological character; ② Pebble stone has a natural, hard, cool and intimate psychological character; ③ Turf grass incorporates an intimate and soft psychological character; ④ Ceramic brick has an artificial and hard psychological character; ⑤ Tile pavement has a modern, artificial, hard and cool psychological character; ⑥ Water permeable concrete has a modern and artificial psychological character; ⑦ Flag stone has a natural psychological character; ⑧ Granite has a modern and artificial psychological character; ⑨ Portland concrete has an artificial and hard psychological character; ⑩ Small compacted brick has an artificial, dynamic and modern psychological character; ⑪ Wood block pavement has a natural and traditional psychological character; ⑫ Asphalt concrete pavement has a modern, hard and artificial character. 2. On the results of the cluster analysis regarding psychological indexes for 12 pavement materials, pavement materials were categorized in 3 clusters. Among them, one cluster was mainly used as the most popular pavement material in our urban spaces and streets. From this point of view, psychological character for pavement material in our urban spaces and streets was not as various as we expected. 3. In conclusion, the proper selection of pavement materials was very important and the factors affecting the human psychological character should be considered in the design of urban spaces and streets.