• Title/Summary/Keyword: compact space

Search Result 819, Processing Time 0.025 seconds

A NOTE ON APPROXIMATION PROPERTIES OF BANACH SPACES

  • Cho, Chong-Man
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.293-298
    • /
    • 1994
  • It is well known that the approximation property and the compact approximation property are not hereditary properties; that is, a closed subspace M of a Banach space X with the (compact) approximation property need not have the (compact) approximation property. In 1973, A. Davie [2] proved that for each 2 < p < $\infty$, there is a closed subspace $Y_{p}$ of $\ell_{p}$ which does not have the approximation property. In fact, the space Davie constructed even fails to have a weaker property, the compact approximation property. In 1991, A. Lima [12] proved that if X is a Banach space with the approximation property and a closed subspace M of X is locally $\lambda$-complemented in X for some $1\leq\lambda < $\infty$, then M has the approximation property.(omitted)

  • PDF

THE CHAIN RECURRENT SET ON COMPACT TVS-CONE METRIC SPACES

  • Lee, Kyung Bok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.157-163
    • /
    • 2020
  • Conley introduced attracting sets and repelling sets for a flow on a topological space and showed that if f is a flow on a compact metric space, then 𝓡(f) = ⋂{AU ∪ A*U |U is a trapping region for f}. In this paper we introduce chain recurrent set, trapping region, attracting set and repelling set for a flow f on a TVS-cone metric space and prove that if f is a flow on a compact TVS-cone metric space, then 𝓡(f) = ⋂{AU ∪ A*U |U is a trapping region for f}.

HEMICOMPACTNESS AND HEMICONNECTEDNESS OF HYPERSPACES

  • Baik, B.S.;Hur, K.;Lee, S.W.;Rhee, C.J.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.171-179
    • /
    • 2000
  • We prove the following: (1) For a Hausdorff space X, the hyperspace K(X) of compact subsets of X is hemicompact if and only if X is hemicompact. (2) For a regular space X, the hyperspace $C_K(X)$ of subcontinua of X is hemicompact (hemiconnected) if and only if X is hemicompact (hemiconnected). (3) For a locally compact Hausdorff space X, each open set in X is hemicompact if and only if each basic open set in the hyperspace K(X) is hemicompact. (4) For a connected, locally connected, locally compact Hausdorff space X, K(X) is hemiconnected if and only if X is hemiconnected.

  • PDF

THICKLY SYNDETIC SENSITIVITY OF SEMIGROUP ACTIONS

  • Wang, Huoyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1125-1135
    • /
    • 2018
  • We show that for an M-action on a compact Hausdorff uniform space, if it has at least two disjoint compact invariant subsets, then it is thickly syndetically sensitive. Additionally, we point out that for a P-M-action of a discrete abelian group on a compact Hausdorff uniform space, the multi-sensitivity is equivalent to both thick sensitivity and thickly syndetic sensitivity.

On Tightness of Product Space

  • Hong, Seung Hee
    • The Mathematical Education
    • /
    • v.13 no.3
    • /
    • pp.17-18
    • /
    • 1975
  • 거리공간과 Normal countable compact의 위상적이 Normal이라는 것은 A.H. Stone에 의하여 이미 밝혀졌고, V.I. Malyhin은 space expX의 Cardrmal invariant와 공간 X 사이의 관계를 논하였다. 본 논문에서는 V.I. Malyin이 밝힌 tightness의 개념을 도입하여 countable tightness의 pracompact와 normal strongly countable compact 공간의 topological product가 Normal이라는 것을 증명하였다.

  • PDF

The metric approximation property and intersection properties of balls

  • Cho, Chong-Man
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.467-475
    • /
    • 1994
  • In 1983 Harmand and Lima [5] proved that if X is a Banach space for which K(X), the space of compact linear operators on X, is an M-ideal in L(X), the space of bounded linear operators on X, then it has the metric compact approximation property. A strong converse of the above result holds if X is a closed subspace of either $\elll_p(1 < p < \infty) or c_0 [2,15]$. In 1979 J. Johnson [7] actually proved that if X is a Banach space with the metric compact approximation property, then the annihilator K(X)^\bot$ of K(X) in $L(X)^*$ is the kernel of a norm-one projection in $L(X)^*$, which is the case if K(X) is an M-ideal in L(X).

  • PDF