• 제목/요약/키워드: comonotonically additive

검색결과 7건 처리시간 0.018초

보단조 가법 구간치 범함수와 구간치 쇼케이적분에 관한 연구(I) (On comonotonically additive interval-valued functionals and interval-valued hoquet integrals(I))

  • Lee, Chae-Jang;Kim, Tae-Kyun;Jeon, Jong-Duek
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.9-13
    • /
    • 2003
  • In this paper, we will define comonotonically additive interval-valued functionals which are generalized comonotonically additive real-valued functionals in Shcmeildler[14] and Narukawa[12], and study some properties of them. And we also investigate some relations between comonotonically additive interval-valued functionals and interval-valued Choquet integrals on a suitable function space cf.[19,10,11,13].

  • PDF

보단조 가법 구간치 범함수와 구간치 쇼케이적분에 관한 연구(II) (On comonotonically additive interval-valued functionals and interval-valued Choquet integrals(II))

  • 장이체;김태균;전종득
    • 한국지능시스템학회논문지
    • /
    • 제14권1호
    • /
    • pp.33-38
    • /
    • 2004
  • 이 논문에서는 Schmeidler[14]와 Narukawa[12]에 나오는 보단조 가법 실수치 범함수 개념의 일반화인 보단조 가법 구간치 범함수를 정의하고 그들의 성질을 연구한다. 또한 보단조 가법 구간치 범함수와 구간치 쇼케이적분이 적당한 함수공간 상에서 서로간의 관계를 조사한다. 수의 값을 갖는 함수들의 쇼케이적분을 생각하고자 한다. 이러한 구간 수의 값을 갖는 함수들의 성질들을 조사한다.

INTERVAL-VALUED CHOQUET INTEGRALS AND THEIR APPLICATIONS

  • Jang, Lee-Chae
    • Journal of applied mathematics & informatics
    • /
    • 제16권1_2호
    • /
    • pp.429-443
    • /
    • 2004
  • In this paper, using Zhang, Guo and Liu's comments in [17], we define interval-valued functionals and investigate their properties. Furthermore, we discuss some applications of interval-valued Choquet expectations.

쇼케 이적분과 퍼지 측도 (Choquet integrals and fuzzy measures)

  • 장이채
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 춘계학술대회 학술발표 논문집 제15권 제1호
    • /
    • pp.39-45
    • /
    • 2005
  • 이 논문발표에서는 퍼지측도와 쇼케이적분을 소개하고 지금까지 나은 결과들과 앞으로 가능한 응용들에 대해서 소개하고자한다.

  • PDF

Some relation between compact set-valued functionals and compact set-valued Choquet integrals

  • 장이채;김현미
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.129-132
    • /
    • 2005
  • In this paper, we consider comonotonically additive compact set-valued functionals instead of interval-valued functionals and study some characterizations of them. And we also investigate some relation between compact set-valued functionals and compact set-valued Choquet integrals.

  • PDF

On fuzzy preinvex mappings associated with interval-valued Choquet integrals

  • Lee, Chae-Jang;Kim, Hyun-Mee
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.127-128
    • /
    • 2008
  • In this paper, we consider define fuzzy invex sets and fuzzy preinvex functions on the class of Choquet integrable functions, and interval-valued fuzzy invex sets and interval-valued fuzzy preinvex functions on the class of interval-valued Choquet integrals. And also we prove some properties of them.

  • PDF

On fuzzy number-valued Choquet integrals

  • 장이채;김태균
    • 한국전산응용수학회:학술대회논문집
    • /
    • 한국전산응용수학회 2003년도 KSCAM 학술발표회 프로그램 및 초록집
    • /
    • pp.7-7
    • /
    • 2003
  • We studied closed set-valued Choquet integrals in two papers(1997, 2000) and convergence theorems under some sufficient conditions in two papers(2003), for examples : (i) convergence theorems for monotone convergent sequences of Choquet integrably bounded closed set-valued functions, (ii) covergence theorems for the upper limit and the lower limit of a sequence of Choquet integrably bounded closed set-valued functions. In this presentation, we consider fuzzy number-valued functions and define Choquet integrals of fuzzy number-valued functions. But these concepts of fuzzy number-valued Choquet inetgrals are all based on the corresponding results of interval-valued Choquet integrals. We also discuss their properties which are positively homogeneous and monotonicity of fuzzy number-valued Choquet integrals. Furthermore, we will prove convergence theorems for fuzzy number-valued Choquet integrals. They will be used in the following applications : (1) Subjectively probability and expectation utility without additivity associated with fuzzy events as in Choquet integrable fuzzy number-valued functions, (2) Capacity measure which are presented by comonotonically additive fuzzy number-valued functionals, and (3) Ambiguity measure related with fuzzy number-valued fuzzy inference.

  • PDF