• 제목/요약/키워드: commutator operator

검색결과 22건 처리시간 0.017초

ENDPOINT ESTIMATES FOR MAXIMAL COMMUTATORS IN NON-HOMOGENEOUS SPACES

  • Hu, Guoen;Meng, Yan;Yang, Dachun
    • 대한수학회지
    • /
    • 제44권4호
    • /
    • pp.809-822
    • /
    • 2007
  • Certain weak type endpoint estimates are established for maximal commutators generated by $Calder\acute{o}n-Zygmund$ operators and $Osc_{exp}L^{\gamma}({\mu})$ functions for ${\gamma}{\ge}1$ under the condition that the underlying measure only satisfies some growth condition, where the kernels of $Calder\acute{o}n-Zygmund$ operators only satisfy the standard size condition and some $H\ddot{o}rmander$ type regularity condition, and $Osc_{exp}L^{\gamma}({\mu})$ are the spaces of Orlicz type satisfying that $Osc_{exp}L^{\gamma}({\mu})$ = RBMO(${\mu}$) if ${\gamma}$ = 1 and $Osc_{exp}L^{\gamma}({\mu}){\subset}RBMO({\mu})$ if ${\gamma}$ > 1.

CHARACTERIZATION OF FUNCTIONS VIA COMMUTATORS OF BILINEAR FRACTIONAL INTEGRALS ON MORREY SPACES

  • Mao, Suzhen;Wu, Huoxiong
    • 대한수학회보
    • /
    • 제53권4호
    • /
    • pp.1071-1085
    • /
    • 2016
  • For $b{\in}L^1_{loc}({\mathbb{R}}^n)$, let ${\mathcal{I}}_{\alpha}$ be the bilinear fractional integral operator, and $[b,{\mathcal{I}}_{\alpha}]_i$ be the commutator of ${\mathcal{I}}_{\alpha}$ with pointwise multiplication b (i = 1, 2). This paper shows that if the commutator $[b,{\mathcal{I}}_{\alpha}]_i$ for i = 1 or 2 is bounded from the product Morrey spaces $L^{p_1,{\lambda}_1}({\mathbb{R}}^n){\times}L^{p_2,{\lambda}_2}({\mathbb{R}}^n)$ to the Morrey space $L^{q,{\lambda}}({\mathbb{R}}^n)$ for some suitable indexes ${\lambda}$, ${\lambda}_1$, ${\lambda}_2$ and $p_1$, $p_2$, q, then $b{\in}BMO({\mathbb{R}}^n)$, as well as that the compactness of $[b,{\mathcal{I}}_{\alpha}]_i$ for i = 1 or 2 from $L^{p_1,{\lambda}_1}({\mathbb{R}}^n){\times}L^{p_2,{\lambda}_2}({\mathbb{R}}^n)$ to $L^{q,{\lambda}}({\mathbb{R}}^n)$ implies that $b{\in}CMO({\mathbb{R}}^n)$ (the closure in $BMO({\mathbb{R}}^n)$of the space of $C^{\infty}({\mathbb{R}}^n)$ functions with compact support). These results together with some previous ones give a new characterization of $BMO({\mathbb{R}}^n)$ functions or $CMO({\mathbb{R}}^n)$ functions in essential ways.