• Title/Summary/Keyword: commutative rings

Search Result 226, Processing Time 0.024 seconds

SOME STRONGLY NIL CLEAN MATRICES OVER LOCAL RINGS

  • Chen, Huanyin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.759-767
    • /
    • 2011
  • An element of a ring is called strongly nil clean provided that it can be written as the sum of an idempotent and a nilpotent element that commute. A ring is strongly nil clean in case each of its elements is strongly nil clean. We investigate, in this article, the strongly nil cleanness of 2${\times}$2 matrices over local rings. For commutative local rings, we characterize strongly nil cleanness in terms of solvability of quadratic equations. The strongly nil cleanness of a single triangular matrix is studied as well.

IDEALS AND DIRECT PRODUCT OF ZERO SQUARE RINGS

  • Bhavanari, Satyanarayana;Lungisile, Goldoza;Dasari, Nagaraju
    • East Asian mathematical journal
    • /
    • v.24 no.4
    • /
    • pp.377-387
    • /
    • 2008
  • We consider associative ring R (not necessarily commutative). In this paper the concepts: zero square ring of type-1/type-2, zero square ideal of type-1/type-2, zero square dimension of a ring R were introduced and obtained several important results. Finally, some relations between the zero square dimension of the direct sum of finite number of rings; and the sum of the zero square dimension of individual rings; were obtained. Necessary examples were provided.

  • PDF

THE HOMOLOGICAL PROPERTIES OF REGULAR INJECTIVE MODULES

  • Wei Qi;Xiaolei Zhang
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.59-69
    • /
    • 2024
  • Let R be a commutative ring. An R-module E is said to be regular injective provided that Ext1R(R/I, E) = 0 for any regular ideal I of R. We first show that the class of regular injective modules have the hereditary property, and then introduce and study the regular injective dimension of modules and regular global dimension of rings. Finally, we give some homological characterizations of total rings of quotients and Dedekind rings.

THE STRONG MORI PROPERTY IN RINGS WITH ZERO DIVISORS

  • ZHOU, DECHUAN;WANG, FANGGUI
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1285-1295
    • /
    • 2015
  • An SM domain is an integral domain which satisfies the ascending chain condition on w-ideals. Then an SM domain also satisfies the descending chain condition on those chains of v-ideals whose intersection is not zero. In this paper, a study is begun to extend these properties to commutative rings with zero divisors. A $Q_0$-SM ring is defined to be a ring which satisfies the ascending chain condition on semiregular w-ideals and satisfies the descending chain condition on those chains of semiregular v-ideals whose intersection is semiregular. In this paper, some properties of $Q_0$-SM rings are discussed and examples are provided to show the difference between $Q_0$-SM rings and SM rings and the difference between $Q_0$-SM rings and $Q_0$-Mori rings.

ON U-GROUP RINGS

  • Osba, Emad Abu;Al-Ezeh, Hasan;Ghanem, Manal
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1075-1082
    • /
    • 2018
  • Let R be a commutative ring, G be an Abelian group, and let RG be the group ring. We say that RG is a U-group ring if a is a unit in RG if and only if ${\epsilon}(a)$ is a unit in R. We show that RG is a U-group ring if and only if G is a p-group and $p{\in}J(R)$. We give some properties of U-group rings and investigate some properties of well known rings, such as Hermite rings and rings with stable range, in the presence of U-group rings.

SOME CONDITIONS ON DERIVATIONS IN PRIME NEAR-RINGS

  • Cho, Yong-Uk
    • The Pure and Applied Mathematics
    • /
    • v.8 no.2
    • /
    • pp.145-152
    • /
    • 2001
  • Posner [Proc. Amer. Math. Soc. 8 (1957), 1093-1100] defined a derivation on prime rings and Herstein [Canad, Math. Bull. 21 (1978), 369-370] derived commutative property of prime ring with derivations. Recently, Bergen [Canad. Math. Bull. 26 (1983), 267-227], Bell and Daif [Acta. Math. Hunger. 66 (1995), 337-343] studied derivations in primes and semiprime rings. Also, in near-ring theory, Bell and Mason [Near-Rungs and Near-Fields (pp. 31-35), Proceedings of the conference held at the University of Tubingen, 1985. Noth-Holland, Amsterdam, 1987; Math. J. Okayama Univ. 34 (1992), 135-144] and Cho [Pusan Kyongnam Math. J. 12 (1996), no. 1, 63-69] researched derivations in prime and semiprime near-rings. In this paper, Posner, Bell and Mason's results are extended in prime near-rings with some conditions.

  • PDF

ON ALMOST QUASI-COHERENT RINGS AND ALMOST VON NEUMANN RINGS

  • El Alaoui, Haitham;El Maalmi, Mourad;Mouanis, Hakima
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.1177-1190
    • /
    • 2022
  • Let R be a commutative ring with identity. We call the ring R to be an almost quasi-coherent ring if for any finite set of elements α1, …, αp and a of R, there exists a positive integer m such that the ideals $\bigcap{_{i=1}^{p}}\;R{\alpha}^m_i$ and AnnRm) are finitely generated, and to be almost von Neumann regular rings if for any two elements a and b in R, there exists a positive integer n such that the ideal (αn, bn) is generated by an idempotent element. This paper establishes necessary and sufficient conditions for the Nagata's idealization and the amalgamated algebra to inherit these notions. Our results allow us to construct original examples of rings satisfying the above-mentioned properties.

UN RINGS AND GROUP RINGS

  • Kanchan, Jangra;Dinesh, Udar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.83-91
    • /
    • 2023
  • A ring R is called a UN ring if every non unit of it can be written as product of a unit and a nilpotent element. We obtain results about lifting of conjugate idempotents and unit regular elements modulo an ideal I of a UN ring R. Matrix rings over UN rings are discussed and it is obtained that for a commutative ring R, a matrix ring Mn(R) is UN if and only if R is UN. Lastly, UN group rings are investigated and we obtain the conditions on a group G and a field K for the group algebra KG to be UN. Then we extend the results obtained for KG to the group ring RG over a ring R (which may not necessarily be a field).

ON NONNIL-SFT RINGS

  • Ali Benhissi;Abdelamir Dabbabi
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.663-677
    • /
    • 2023
  • The purpose of this paper is to introduce a new class of rings containing the class of SFT-rings and contained in the class of rings with Noetherian prime spectrum. Let A be a commutative ring with unit and I be an ideal of A. We say that I is SFT if there exist an integer k ≥ 1 and a finitely generated ideal F ⊆ I of A such that xk ∈ F for every x ∈ I. The ring A is said to be nonnil-SFT, if each nonnil-ideal (i.e., not contained in the nilradical of A) is SFT. We investigate the nonnil-SFT variant of some well known theorems on SFT-rings. Also we study the transfer of this property to Nagata's idealization and the amalgamation algebra along an ideal. Many examples are given. In fact, using the amalgamation construction, we give an infinite family of nonnil-SFT rings which are not SFT.

ON WEAKLY 2-ABSORBING PRIMARY SUBMODULES OF MODULES OVER COMMUTATIVE RINGS

  • Darani, Ahmad Yousefian;Soheilnia, Fatemeh;Tekir, Unsal;Ulucak, Gulsen
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1505-1519
    • /
    • 2017
  • Assume that M is an R-module where R is a commutative ring. A proper submodule N of M is called a weakly 2-absorbing primary submodule of M if $0{\neq}abm{\in}N$ for any $a,b{\in}R$ and $m{\in}M$, then $ab{\in}(N:M)$ or $am{\in}M-rad(N)$ or $bm{\in}M-rad(N)$. In this paper, we extended the concept of weakly 2-absorbing primary ideals of commutative rings to weakly 2-absorbing primary submodules of modules. Among many results, we show that if N is a weakly 2-absorbing primary submodule of M and it satisfies certain condition $0{\neq}I_1I_2K{\subseteq}N$ for some ideals $I_1$, $I_2$ of R and submodule K of M, then $I_1I_2{\subseteq}(N:M)$ or $I_1K{\subseteq}M-rad(N)$ or $I_2K{\subseteq}M-rad(N)$.