• Title/Summary/Keyword: commutative rings

Search Result 226, Processing Time 0.02 seconds

ON STRONGLY 1-ABSORBING PRIMARY IDEALS OF COMMUTATIVE RINGS

  • Almahdi, Fuad Ali Ahmed;Bouba, El Mehdi;Koam, Ali N.A.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1205-1213
    • /
    • 2020
  • Let R be a commutative ring with 1 ≠ 0. In this paper, we introduce a subclass of the class of 1-absorbing primary ideals called the class of strongly 1-absorbing primary ideals. A proper ideal I of R is called strongly 1-absorbing primary if whenever nonunit elements a, b, c ∈ R and abc ∈ I, then ab ∈ I or c ∈ ${\sqrt{0}}$. Firstly, we investigate basic properties of strongly 1-absorbing primary ideals. Hence, we use strongly 1-absorbing primary ideals to characterize rings with exactly one prime ideal (the UN-rings) and local rings with exactly one non maximal prime ideal. Many other results are given to disclose the relations between this new concept and others that already exist. Namely, the prime ideals, the primary ideals and the 1-absorbing primary ideals. In the end of this paper, we give an idea about some strongly 1-absorbing primary ideals of the quotient rings, the polynomial rings, and the power series rings.

SKEW CONSTACYCLIC CODES OVER FINITE COMMUTATIVE SEMI-SIMPLE RINGS

  • Dinh, Hai Q.;Nguyen, Bac Trong;Sriboonchitta, Songsak
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.419-437
    • /
    • 2019
  • This paper investigates skew ${\Theta}-{\lambda}$-constacyclic codes over $R=F_0{\oplus}F_1{\oplus}{\cdots}{\oplus}F_{k-1}$, where $F{_i}^{\prime}s$ are finite fields. The structures of skew ${\lambda}$-constacyclic codes over finite commutative semi-simple rings and their duals are provided. Moreover, skew ${\lambda}$-constacyclic codes of arbitrary length are studied under a new definition. We also show that a skew cyclic code of arbitrary length over finite commutative semi-simple rings is equivalent to either a cyclic code over R or a quasi-cyclic code over R.

INJECTIVE COVERS OVER COMMUTATIVE NOETHERIAN RINGS WITH GLOBAL DIMENSION AT MOST TWO

  • Enochs, Edgar-E.;Kim, Hae-Sik;Song, Yeong-Moo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.1
    • /
    • pp.167-176
    • /
    • 2003
  • In [3], Del Valle, Enochs and Martinez studied flat envelopes over rings and they showed that over rings as in the title these are very well behaved. If we replace flat with injective and envelope with the dual notion of a cover we then have the injective covers. In this article we show that these injective covers over the commutative noetherian rings with global dimension at most 2 have properties analogous to those of the flat envelopes over these rings.

ON STRONGLY QUASI J-IDEALS OF COMMUTATIVE RINGS

  • El Mehdi Bouba;Yassine EL-Khabchi;Mohammed Tamekkante
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.93-104
    • /
    • 2024
  • Let R be a commutative ring with identity. In this paper, we introduce a new class of ideals called the class of strongly quasi J-ideals lying properly between the class of J-ideals and the class of quasi J-ideals. A proper ideal I of R is called a strongly quasi J-ideal if, whenever a, b ∈ R and ab ∈ I, then a2 ∈ I or b ∈ Jac(R). Firstly, we investigate some basic properties of strongly quasi J-ideals. Hence, we give the necessary and sufficient conditions for a ring R to contain a strongly quasi J-ideals. Many other results are given to disclose the relations between this new concept and others that already exist. Namely, the primary ideals, the prime ideals and the maximal ideals. Finally, we give an idea about some strongly quasi J-ideals of the quotient rings, the localization of rings, the polynomial rings and the trivial rings extensions.

On Left SF-Rings and Strongly Regular Rings

  • Subedi, Tikaram;Buhphang, Ardeline Mary
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.861-866
    • /
    • 2016
  • A ring R called left SF if its simple left modules are at. Regular rings are known to be left SF-rings. However, till date it is unknown whether a left SF-ring is necessarily regular. In this paper, we prove the strong regularity of left (right) complement bounded left SF-rings. We also prove the strong regularity of a class of generalized semi-commutative left SF-rings.

ZERO-DIVISOR GRAPHS OF MULTIPLICATION MODULES

  • Lee, Sang Cheol;Varmazyar, Rezvan
    • Honam Mathematical Journal
    • /
    • v.34 no.4
    • /
    • pp.571-584
    • /
    • 2012
  • In this study, we investigate the concept of zero-divisor graphs of multiplication modules over commutative rings as a natural generalization of zero-divisor graphs of commutative rings. In particular, we study the zero-divisor graphs of the module $\mathbb{Z}_n$ over the ring $\mathbb{Z}$ of integers, where $n$ is a positive integer greater than 1.

ON RINGS IN WHICH EVERY IDEAL IS WEAKLY PRIME

  • Hirano, Yasuyuki;Poon, Edward;Tsutsui, Hisaya
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.1077-1087
    • /
    • 2010
  • Anderson-Smith [1] studied weakly prime ideals for a commutative ring with identity. Blair-Tsutsui [2] studied the structure of a ring in which every ideal is prime. In this paper we investigate the structure of rings, not necessarily commutative, in which all ideals are weakly prime.

SOME FACTORIZATION PROPERTIES OF IDEALIZATION IN COMMUTATIVE RINGS WITH ZERO DIVISORS

  • Sina Eftekhari;Sayyed Heidar Jafari;Mahdi Reza Khorsandi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.2
    • /
    • pp.291-299
    • /
    • 2024
  • We study some factorization properties of the idealization R(+)M of a module M in a commutative ring R which is not necessarily a domain. We show that R(+)M is ACCP if and only if R is ACCP and M satisfies ACC on its cyclic submodules. We give an example to show that the BF property is not necessarily preserved in idealization, and give some conditions under which R(+)M is a BFR. We also characterize the idealization rings which are UFRs.