• Title/Summary/Keyword: commutative rings

Search Result 226, Processing Time 0.023 seconds

A NOTE ON w-NOETHERIAN RINGS

  • Xing, Shiqi;Wang, Fanggui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.541-548
    • /
    • 2015
  • Let R be a commutative ring. An R-module M is called a w-Noetherian module if every submodule of M is of w-finite type. R is called a w-Noetherian ring if R as an R-module is a w-Noetherian module. In this paper, we present an exact version of the Eakin-Nagata Theorem on w-Noetherian rings. To do this, we prove the Formanek Theorem for w-Noetherian rings. Further, we point out by an example that the condition (${\dag}$) in the Chung-Ha-Kim version of the Eakin-Nagata Theorem on SM domains is essential.

ON RIGHT QUASI-DUO RINGS WHICH ARE II-REGULAR

  • Kim, Nam-Kyun;Lee, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.217-227
    • /
    • 2000
  • This paper is motivated by the results in [2], [10], [13] and [19]. We study some properties of generalizations of commutative rings and relations between them. We also show that for a right quasi-duo right weakly ${\pi}-regular$ ring R, R is an (S,2)-ring if and only if every idempotent in R is a sum of two units in R, which gives a generalization of [2, Theorem 4] on right quasi-duo rings. Moreover we find a condition which is equivalent to the strongly ${\pi}-regularity$ of an abelian right quasi-duo ring.

  • PDF

AMALGAMATED MODULES ALONG AN IDEAL

  • El Khalfaoui, Rachida;Mahdou, Najib;Sahandi, Parviz;Shirmohammadi, Nematollah
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • Let R and S be two commutative rings, J be an ideal of S and f : R → S be a ring homomorphism. The amalgamation of R and S along J with respect to f, denoted by R ⋈f J, is the special subring of R × S defined by R ⋈f J = {(a, f(a) + j) | a ∈ R, j ∈ J}. In this paper, we study some basic properties of a special kind of R ⋈f J-modules, called the amalgamation of M and N along J with respect to ��, and defined by M ⋈�� JN := {(m, ��(m) + n) | m ∈ M and n ∈ JN}, where �� : M → N is an R-module homomorphism. The new results generalize some known results on the amalgamation of rings and the duplication of a module along an ideal.

ON n-ABSORBING IDEALS AND THE n-KRULL DIMENSION OF A COMMUTATIVE RING

  • Moghimi, Hosein Fazaeli;Naghani, Sadegh Rahimi
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1225-1236
    • /
    • 2016
  • Let R be a commutative ring with $1{\neq}0$ and n a positive integer. In this article, we introduce the n-Krull dimension of R, denoted $dim_n\;R$, which is the supremum of the lengths of chains of n-absorbing ideals of R. We study the n-Krull dimension in several classes of commutative rings. For example, the n-Krull dimension of an Artinian ring is finite for every positive integer n. In particular, if R is an Artinian ring with k maximal ideals and l(R) is the length of a composition series for R, then $dim_n\;R=l(R)-k$ for some positive integer n. It is proved that a Noetherian domain R is a Dedekind domain if and only if $dim_n\;R=n$ for every positive integer n if and only if $dim_2\;R=2$. It is shown that Krull's (Generalized) Principal Ideal Theorem does not hold in general when prime ideals are replaced by n-absorbing ideals for some n > 1.

THE w-WEAK GLOBAL DIMENSION OF COMMUTATIVE RINGS

  • WANG, FANGGUI;QIAO, LEI
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1327-1338
    • /
    • 2015
  • In this paper, we introduce and study the w-weak global dimension w-w.gl.dim(R) of a commutative ring R. As an application, it is shown that an integral domain R is a $Pr\ddot{u}fer$ v-multiplication domain if and only if w-w.gl.dim(R) ${\leq}1$. We also show that there is a large class of domains in which Hilbert's syzygy Theorem for the w-weak global dimension does not hold. Namely, we prove that if R is an integral domain (but not a field) for which the polynomial ring R[x] is w-coherent, then w-w.gl.dim(R[x]) = w-w.gl.dim(R).

INJECTIVE COVERS OVER COMMUTATIVE NOETHERIAN RINGS OF GLOBAL DIMENSION AT MOST TWO II

  • KIM, HAE-SIK;SONG, YEONG-MOO
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.437-442
    • /
    • 2005
  • In studying injective covers, the modules C such that Hom(E, C) = 0 and $Ext^1$(E, C) = 0 for all injective module E play an important role because of Wakamatsu's lemma. If C is a module over the ring k[[x, y]] with k a field, the class of these modules C contains the class $\={D}$ of all direct summands of products of modules of finite length ([3, Theorem 2.9]). In this paper we show that every module over any commutative ring has a $\={D}$-preenvelope.

DERIVATION MODULES OF GROUP RINGS AND INTEGERS OF CYCLOTOMIC FIELDS

  • Chung, I.Y.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.31-36
    • /
    • 1983
  • Let R be a commutative ring with 1, and A a unitary commutative R-algebra. By a derivation module of A, we mean a pair (M, d), where M is an A-module and d: A.rarw.M and R-derivation, i.e., d is an R-linear mapping such that d(ab)=a)db)+b(da). A derivation module homomorphism f:(M,d).rarw.(N, .delta.) is an A-homomorphism f:M.rarw.N such that f.d=.delta.. A derivation module of A, (U, d), there exists a unique derivation module homomorphism f:(U, d).rarw.(M,.delta.). In fact, a universal derivation module of A exists in the category of derivation modules of A, and is unique up to unique derivation module isomorphisms [2, pp. 101]. When (U,d) is a universal derivation module of R-algebra A, the A-module U is denoted by U(A/R). For out convenience, U(A/R) will also be called a universal derivation module of A, and d the R-derivation corresponding to U(A/R).

  • PDF

ON 2-ABSORBING PRIMARY IDEALS IN COMMUTATIVE RINGS

  • Badawi, Ayman;Tekir, Unsal;Yetkin, Ece
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.1163-1173
    • /
    • 2014
  • Let R be a commutative ring with $1{\neq}0$. In this paper, we introduce the concept of 2-absorbing primary ideal which is a generalization of primary ideal. A proper ideal I of R is called a 2-absorbing primary ideal of R if whenever $a,b,c{\in}R$ and $abc{\in}I$, then $ab{\in}I$ or $ac{\in}\sqrt{I}$ or $bc{\in}\sqrt{I}$. A number of results concerning 2-absorbing primary ideals and examples of 2-absorbing primary ideals are given.

ON WEAKLY 2-ABSORBING PRIMARY IDEALS OF COMMUTATIVE RINGS

  • Badawi, Ayman;Tekir, Unsal;Yetkin, Ece
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.97-111
    • /
    • 2015
  • Let R be a commutative ring with $1{\neq}0$. In this paper, we introduce the concept of weakly 2-absorbing primary ideal which is a generalization of weakly 2-absorbing ideal. A proper ideal I of R is called a weakly 2-absorbing primary ideal of R if whenever a, b, $c{\in}R$ and $0{\neq}abc{\in}I$, then $ab{\in}I$ or $ac{\in}\sqrt{I}$ or $bc{\in}\sqrt{I}$. A number of results concerning weakly 2-absorbing primary ideals and examples of weakly 2-absorbing primary ideals are given.

DERIVATIONS WITH ANNIHILATOR CONDITIONS IN PRIME RINGS

  • Dhara, Basudeb;Kar, Sukhendu;Mondal, Sachhidananda
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1651-1657
    • /
    • 2013
  • Let R be a prime ring, I a nonzero ideal of R, $d$ a derivation of R, $m({\geq}1)$, $n({\geq}1)$ two fixed integers and $a{\in}R$. (i) If $a((d(x)y+xd(y)+d(y)x+yd(x))^n-(xy+yx))^m=0$ for all $x,y{\in}I$, then either $a=0$ or R is commutative; (ii) If $char(R){\neq}2$ and $a((d(x)y+xd(y)+d(y)x+yd(x))^n-(xy+yx)){\in}Z(R)$ for all $x,y{\in}I$, then either $a=0$ or R is commutative.