• Title/Summary/Keyword: communication networks

Search Result 5,470, Processing Time 0.033 seconds

Analysis of the Impact Relationship for Risk Factors on Big Data Projects Using SNA (SNA를 활용한 빅데이터 프로젝트의 위험요인 영향 관계 분석)

  • Park, Dae-Gwi;Kim, Seung-Hee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.79-86
    • /
    • 2021
  • In order to increase the probability of success in big data projects, quantified techniques are required to analyze the root cause of risks from complex causes and establish optimal countermeasures. To this end, this study measures risk factors and relationships through SNA analysis and presents a way to respond to risks based on them. In other words, it derives a dependency network matrix by utilizing the results of correlation analysis between risk groups in the big data projects presented in the preliminary study and performs SNA analysis. In order to derive the dependency network matrix, partial correlation is obtained from the correlation between the risk nodes, and activity dependencies are derived by node by calculating the correlation influence and correlation dependency, thereby producing the causal relationship between the risk nodes and the degree of influence between all nodes in correlation. Recognizing the root cause of risks from networks between risk factors derived through SNA between risk factors enables more optimized and efficient risk management. This study is the first to apply SNA analysis techniques in relation to risk management response, and the results of this study are significant in that it not only optimizes the sequence of risk management for major risks in relation to risk management in IT projects but also presents a new risk analysis technique for risk control.

A Study on the Analysis of R&D Trends and the Development Plan of Electronic Attack System (전자공격체계 연구개발 동향 분석과 발전방안에 대한 연구)

  • Sim, Jaeseong;Park, Byoung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.469-476
    • /
    • 2021
  • An electronic attack (EA) system is an essential weapon system for performing electronic warfare missions that contain signal tracking and jamming against multiple threats using electromagnetic waves, such as air defense radars, wireless command and communication networks, and guided missiles. The combat effectiveness can be maximized, and the survivability of militarily protecting combat power can be enhanced through EA mission operations, such as disabling the functions of multiple threats. The EA system can be used as a radio frequency jamming system to respond to drone attacks on the core infrastructure, such as airports, power plants, and communication broadcasting systems, in the civilian field. This study examined the criteria for classification according to the electronic attack missions of foreign EA systems based on an aviation platform. The foreign R&D trends by those criteria were investigated. Moreover, by analyzing the R&D trends of domestic EA systems and future battlefields in the domestic security environments, this paper proposes technological development plans of EA systems suitable for the future battlefield environments compared to the foreign R&D trends.

Efficient RSA-Based PAKE Procotol for Low-Power Devices (저전력 장비에 적합한 효율적인 RSA 기반의 PAKE 프로토콜)

  • Lee, Se-Won;Youn, Taek-Young;Park, Yung-Ho;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.6
    • /
    • pp.23-35
    • /
    • 2009
  • Password-Authenticated Key Exchange (PAKE) Protocol is a useful tool for secure communication conducted over open networks without sharing a common secret key or assuming the existence of the public key infrastructure (PKI). It seems difficult to design efficient PAKE protocols using RSA, and thus many PAKE protocols are designed based on the Diffie-Hellman key exchange (DH-PAKE). Therefore it is important to design an efficient PAKE based on RSA function since the function is suitable for designing a PAKE protocol for imbalanced communication environment. In this paper, we propose a computationally-efficient key exchange protocol based on the RSA function that is suitable for low-power devices in imbalanced environment. Our protocol is more efficient than previous RSA-PAKE protocols, required theoretical computation and experiment time in the same environment. Our protocol can provide that it is more 84% efficiency key exchange than secure and the most efficient RSA-PAKE protocol CEPEK. We can improve the performance of our protocol by computing some costly operations in offline step. We prove the security of our protocol under firmly formalized security model in the random oracle model.

Secure and Efficient V2V Message Authentication Scheme in Dense Vehicular Communication Networks (차량 밀집환경에서 안전하고 효율적인 V2V 메시지 인증기법)

  • Jung, Seock-Jae;Yoo, Young-Jun;Paik, Jung-Ha;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.4
    • /
    • pp.41-52
    • /
    • 2010
  • Message authentication is an essential security element in vehicular ad-hoc network(VANET). For a secure message authentication, integrity, availability, privacy preserving skill, and also efficiency in various environment should be provided. RAISE scheme has been proposed to provide efficient message authentication in the environment crowded with lots of vehicles and generally considered to be hard to provide efficiency. However, as the number of vehicles communicating in the area increases, the overhead is also incurred in proportion to the number of vehicles so that it still needs to be reduced, and the scheme is vulnerable to some attacks. In this paper, to make up for the vulnerabilities in dense vehicular communication network, we propose a more secure and efficient scheme using a process that RSU(Road Side Unit) transmits the messages of neighbor vehicles at once with Bloom Filter, and timestamp to protect against replay attack. Moreover, by adding a handover function to the scheme, we simplify the authentication process as omitting the unnecessary key-exchange process when a vehicle moves to other area. And we confirm the safety and efficiency of the scheme by simulating the false positive probability and calculating the traffic.

A New Incentive Based Bandwidth Allocation Scheme For Cooperative Non-Orthogonal Multiple Access (협력 비직교 다중 접속 네트워크에서 새로운 인센티브 기반 주파수 할당 기법)

  • Kim, Jong Won;Kim, Sung Wook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.6
    • /
    • pp.173-180
    • /
    • 2021
  • Non Orthogonal Multiple Access (NOMA) is a technology to guarantee the explosively increased Quality of Service(QoS) of users in 5G networks. NOMA can remove the frequent orthogonality in Orthogonal Multiple Access (OMA) while allocating the power differentially to classify user signals. NOMA can guarantee higher communication speed than OMA. However, the NOMA has one disadvantage; it consumes a more energy power when the distance increases. To solve this problem, relay nodes are employed to implement the cooperative NOMA control idea. In a cooperative NOMA network, relay node participations for cooperative communications are essential. In this paper, a new bandwidth allocation scheme is proposed for cooperative NOMA platform. By employing the idea of Vickrey-Clarke-Groves (VCG) mechanism, the proposed scheme can effectively prevent selfishly actions of relay nodes in the cooperative NOMA network. Especially, base stations can pay incentives to relay nodes as much as the contributes of relay nodes. Therefore, the proposed scheme can control the selfish behavior of relay nodes to improve the overall system performance.

DNN-Based Dynamic Cell Selection and Transmit Power Allocation Scheme for Energy Efficiency Heterogeneous Mobile Communication Networks (이기종 이동통신 네트워크에서 에너지 효율화를 위한 DNN 기반 동적 셀 선택과 송신 전력 할당 기법)

  • Kim, Donghyeon;Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1517-1524
    • /
    • 2022
  • In this paper, we consider a heterogeneous network (HetNet) consisting of one macro base station and multiple small base stations, and assume the coordinated multi-point transmission between the base stations. In addition, we assume that the channel between the base station and the user consists of path loss and Rayleigh fading. Under these assumptions, we present the energy efficiency (EE) achievable by the user for a given base station and we formulate an optimization problem of dynamic cell selection and transmit power allocation to maximize the total EE of the HetNet. In this paper, we propose an unsupervised deep learning method to solve the optimization problem. The proposed deep learning-based scheme can provide high EE while having low complexity compared to the conventional iterative convergence methods. Through the simulation, we show that the proposed dynamic cell selection scheme provides higher EE performance than the maximum signal-to-interference-plus-noise ratio scheme and the Lagrangian dual decomposition scheme, and the proposed transmit power allocation scheme provides the similar performance to the trust region interior point method which can achieve the maximum EE.

A Design of the Vehicle Crisis Detection System(VCDS) based on vehicle internal and external data and deep learning (차량 내·외부 데이터 및 딥러닝 기반 차량 위기 감지 시스템 설계)

  • Son, Su-Rak;Jeong, Yi-Na
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.2
    • /
    • pp.128-133
    • /
    • 2021
  • Currently, autonomous vehicle markets are commercializing a third-level autonomous vehicle, but there is a possibility that an accident may occur even during fully autonomous driving due to stability issues. In fact, autonomous vehicles have recorded 81 accidents. This is because, unlike level 3, autonomous vehicles after level 4 have to judge and respond to emergency situations by themselves. Therefore, this paper proposes a vehicle crisis detection system(VCDS) that collects and stores information outside the vehicle through CNN, and uses the stored information and vehicle sensor data to output the crisis situation of the vehicle as a number between 0 and 1. The VCDS consists of two modules. The vehicle external situation collection module collects surrounding vehicle and pedestrian data using a CNN-based neural network model. The vehicle crisis situation determination module detects a crisis situation in the vehicle by using the output of the vehicle external situation collection module and the vehicle internal sensor data. As a result of the experiment, the average operation time of VESCM was 55ms, R-CNN was 74ms, and CNN was 101ms. In particular, R-CNN shows similar computation time to VESCM when the number of pedestrians is small, but it takes more computation time than VESCM as the number of pedestrians increases. On average, VESCM had 25.68% faster computation time than R-CNN and 45.54% faster than CNN, and the accuracy of all three models did not decrease below 80% and showed high accuracy.

Regional Analysis of Load Loss in Power Distribution Lines Based on Smartgrid Big Data (스마트그리드 빅데이터 기반 지역별 배전선로 부하손실 분석)

  • Jae-Hun, Cho;Hae-Sung, Lee;Han-Min, Lim;Byung-Sung, Lee;Chae-Joo, Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1013-1024
    • /
    • 2022
  • In addition to the assessment measure of electric quality levels, load loss are also a factor in hindering the financial profits of electrical sales companies. Therefore, accurate analysis of load losses generated from distributed power networks is very important. The accurate calculation of load losses in the distribution line has been carried out for a long time in many research institutes as well as power utilities around the world. But it is increasingly difficult to calculate the exact amount of loss due to the increase in the congestion of distribution power network due to the linkage of distributed energy resources(DER). In this paper, we develop smart grid big data infrastructure in order to accurately analyze the load loss of the distribution power network due to the connection of DERs. Through the preprocess of data selected from the smart grid big data, we develop a load loss analysis model that eliminated 'veracity' which is one of the characteristics of smart grid big data. Our analysis results can be used for facility investment plans or network operation plans to maintain stable supply reliability and power quality.

Artificial Intelligence for Assistance of Facial Expression Practice Using Emotion Classification (감정 분류를 이용한 표정 연습 보조 인공지능)

  • Dong-Kyu, Kim;So Hwa, Lee;Jae Hwan, Bong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1137-1144
    • /
    • 2022
  • In this study, an artificial intelligence(AI) was developed to help with facial expression practice in order to express emotions. The developed AI used multimodal inputs consisting of sentences and facial images for deep neural networks (DNNs). The DNNs calculated similarities between the emotions predicted by the sentences and the emotions predicted by facial images. The user practiced facial expressions based on the situation given by sentences, and the AI provided the user with numerical feedback based on the similarity between the emotion predicted by sentence and the emotion predicted by facial expression. ResNet34 structure was trained on FER2013 public data to predict emotions from facial images. To predict emotions in sentences, KoBERT model was trained in transfer learning manner using the conversational speech dataset for emotion classification opened to the public by AIHub. The DNN that predicts emotions from the facial images demonstrated 65% accuracy, which is comparable to human emotional classification ability. The DNN that predicts emotions from the sentences achieved 90% accuracy. The performance of the developed AI was evaluated through experiments with changing facial expressions in which an ordinary person was participated.

Study of Improved CNN Algorithm for Object Classification Machine Learning of Simple High Resolution Image (고해상도 단순 이미지의 객체 분류 학습모델 구현을 위한 개선된 CNN 알고리즘 연구)

  • Hyeopgeon Lee;Young-Woon Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.1
    • /
    • pp.41-49
    • /
    • 2023
  • A convolutional neural network (CNN) is a representative algorithm for implementing artificial neural networks. CNNs have improved on the issues of rapid increase in calculation amount and low object classification rates, which are associated with a conventional multi-layered fully-connected neural network (FNN). However, because of the rapid development of IT devices, the maximum resolution of images captured by current smartphone and tablet cameras has reached 108 million pixels (MP). Specifically, a traditional CNN algorithm requires a significant cost and time to learn and process simple, high-resolution images. Therefore, this study proposes an improved CNN algorithm for implementing an object classification learning model for simple, high-resolution images. The proposed method alters the adjacency matrix value of the pooling layer's max pooling operation for the CNN algorithm to reduce the high-resolution image learning model's creation time. This study implemented a learning model capable of processing 4, 8, and 12 MP high-resolution images for each altered matrix value. The performance evaluation result showed that the creation time of the learning model implemented with the proposed algorithm decreased by 36.26% for 12 MP images. Compared to the conventional model, the proposed learning model's object recognition accuracy and loss rate were less than 1%, which is within the acceptable error range. Practical verification is necessary through future studies by implementing a learning model with more varied image types and a larger amount of image data than those used in this study.