• Title/Summary/Keyword: communication networks

Search Result 5,470, Processing Time 0.034 seconds

Process Optimization of the Contact Formation for High Efficiency Solar Cells Using Neural Networks and Genetic Algorithms (신경망과 유전알고리즘을 이용한 고효율 태양전지 접촉형성 공정 최적화)

  • Jung, Se-Won;Lee, Sung-Joon;Hong, Sang-Jeen;Han, Seung-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.2075-2082
    • /
    • 2006
  • This paper presents modeling and optimization techniques for hish efficiency solar cell process on single-crystalline float zone (FZ) wafers. Among a sequence of multiple steps of fabrication, the followings are the most sensitive steps for the contact formation: 1) Emitter formation by diffusion; 2) Anti-reflection-coating (ARC) with silicon nitride using plasma-enhanced chemical vapor deposition (PECVD); 3) Screen-printing for front and back metalization; and 4) Contact formation by firing. In order to increase the performance of solar cells in terms of efficiency, the contact formation process is modeled and optimized using neural networks and genetic algorithms, respectively. This paper utilizes the design of experiments (DOE) in contact formation to reduce process time and fabrication costs. The experiments were designed by using central composite design which consists of 24 factorial design augmented by 8 axial points with three center points. After contact formation process, the efficiency of the fabricated solar cell is modeled using neural networks. Established efficiency model is then used for the analysis of the process characteristics and process optimization for more efficient solar cell fabrication.

Path-based In-network Join Processing for Event Detection and Filtering in Sensor Networks (센서 네트워크에서 이벤트 검출 및 필터링을 위한 경로기반 네트워크-내 조인 프로세싱 방법)

  • Jeon, Ju-Hyuk;Yoo, Jae-Soo;Kim, Myoung-Ho
    • Journal of KIISE:Databases
    • /
    • v.33 no.6
    • /
    • pp.620-630
    • /
    • 2006
  • Event-detection is an important application of sensor networks. Join operations can facilitate event-detection with a condition table predefined by a user. When join operations are used for event-detection, it is desirable, if possible, to do in-network join processing to reduce communication costs. In this paper, we propose an energy-efficient in-network join algorithm, called PBA. In PBA, each partition of a condition table is stored along the path from each node to the base station, and then in-network joins are performed on the path. Since each node can identify the parts to store in its storage by its level, PBA reduces the cost of disseminating a condition table considerably Moreover, while the existing method does not work well when the ratio of the size of the condition table to the density of the network is a little bit large, our proposed method PBA does not have such a restriction and works efficiently in most cases. The results of experiments show that PBA is efficient usually and especially provides significant cost reduction over existing one when a condition table is relatively large in comparison with the density of the network, or the routing tree of the network is high.

A Time-Parameterized Data-Centric Storage Method for Storage Utilization and Energy Efficiency in Sensor Networks (센서 네트워크에서 저장 공간의 활용성과 에너지 효율성을 위한 시간 매개변수 기반의 데이타 중심 저장 기법)

  • Park, Yong-Hun;Yoon, Jong-Hyun;Seo, Bong-Min;Kim, June;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • v.36 no.2
    • /
    • pp.99-111
    • /
    • 2009
  • In wireless sensor networks, various schemes have been proposed to store and process sensed data efficiently. A Data-Centric Storage(DCS) scheme assigns distributed data regions to sensors and stores sensed data to the sensor which is responsible for the data region overlapping the data. The DCS schemes have been proposed to reduce the communication cost for transmitting data and process exact queries and range queries efficiently. Recently, KDDCS that readjusts the distributed data regions dynamically to sensors based on K-D tree was proposed to overcome the storage hot-spots. However, the existing DCS schemes including KDDCS suffer from Query Hot-Spots that are formed if the query regions are not uniformly distributed. As a result, it causes reducing the life time of the sensor network. In this paper, we propose a new DCS scheme, called TPDCS(Time-Parameterized DCS), that avoids the problems of storage hot-spots and query hot-spots. To decentralize the skewed. data and queries, the data regions are assigned by a time dimension as well as data dimensions in our proposed scheme. Therefore, TPDCS extends the life time of sensor networks. It is shown through various experiments that our scheme outperform the existing schemes.

Energy-Efficient Multipath Routing Protocol for Supporting Mobile Events in Wireless Sensor Networks (무선 센서 네트워크에서 이동 이벤트를 지원하기 위한 에너지 효율적인 멀티패스 라우팅 프로토콜)

  • Kim, Hoewon;Lee, Euisin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.12
    • /
    • pp.455-462
    • /
    • 2016
  • Wireless sensor networks have been researched to gather data about events on sensor fields from sources at sinks. Multipath routing is one of attractive approaches to reliably send data against the problem of frequent breakages on paths from sources to sinks due to node and link failures. As mobile events such as humans, animals, and vehicles are considered, sources may be continuously generated according to the movement of the mobile event. Thus, mobile events provide new challenging issue in multipath routing. However, the research on multipath routing mainly focus on both efficient multipath construction from sources to static sinks and fast multipath reconstruction against path breakages. Accordingly, the previous multipath routing protocols request each source continuously generated by a mobile event to construct individual multipath from the source to sinks. This induces the increase of multipath construction cost in the previous protocols in proportion to the number of source. Therefore, we propose efficient multipath routing protocol for supporting continuous sources generated by mobile events. In the proposed protocol, new source efficiently reconstructs its multipath by exploiting the existing multipath of previous sources. To do this, the proposed protocol selects one among three reconstruction methods: a local reconstruction, a global partial one, and a global full one. For a selection decision, we provide an analytical energy consumption cost model that calculates the summation of both the multipath reconstruction cost and the data forwarding cost. Simulation results show that the proposed protocol has better performance than the previous protocol to provide multipath routing for mobile events.

A Backup Node Based Fault-tolerance Scheme for Coverage Preserving in Wireless Sensor Networks (무선 센서 네트워크에서의 감지범위 보존을 위한 백업 노드 기반 결함 허용 기법)

  • Hahn, Joo-Sun;Ha, Rhan
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.4
    • /
    • pp.339-350
    • /
    • 2009
  • In wireless sensor networks, the limited battery resources of sensor nodes have a direct impact on network lifetime. To reduce unnecessary power consumption, it is often the case that only a minimum number of sensor nodes operate in active mode while the others are kept in sleep mode. In such a case, however, the network service can be easily unreliable if any active node is unable to perform its sensing or communication function because of an unexpected failure. Thus, for achieving reliable sensing, it is important to maintain the sensing level even when some sensor nodes fail. In this paper, we propose a new fault-tolerance scheme, called FCP(Fault-tolerant Coverage Preserving), that gives an efficient way to handle the degradation of the sensing level caused by sensor node failures. In the proposed FCP scheme, a set of backup nodes are pre-designated for each active node to be used to replace the active node in case of its failure. Experimental results show that the FCP scheme provides enhanced performance with reduced overhead in terms of sensing coverage preserving, the number of backup nodes and the amount of control messages. On the average, the percentage of coverage preserving is improved by 87.2% while the additional number of backup nodes and the additional amount of control messages are reduced by 57.6% and 99.5%, respectively, compared with previous fault-tolerance schemes.

A Data Aggregation Scheme for Enhancing the Efficiency of Data Aggregation and Correctness in Wireless Sensor Networks (무선 센서 네트워크에서 데이터 수집의 효율성 및 정확성 향상을 위한 데이터 병합기법)

  • Kim, Hyun-Tae;Yu, Tae-Young;Jung, Kyu-Su;Jeon, Yeong-Bae;Ra, In-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.531-536
    • /
    • 2006
  • Recently, many of researchers have been studied in data processing oriented middleware for wireless sensor networks with the rapid advances on sensor and wireless communication technologies. In a wireless sensor network, a middleware should handle the data loss problem at an intermediate sensor node caused by instantaneous data burstness to support efficient processing and fast delivering of the sensing data. To handle this problem, a simple data discarding or data compressing policy for reducing the total amount of data to be transferred is typically used. But, data discarding policy decreases the correctness of a collected data, in other hand, data compressing policy requires additional processing overhead with the high complexity of the given algorithm. In this paper, it proposes a data-average method for enhancing the efficiency of data aggregation and correctness where the sensed data should be delivered only with the limited computing power and energy resource. With the proposed method, unnecessary data transfer of the overlapped data is eliminated and data correctness is enhanced by using the proposed averaging scheme when an instantaneous data burstness is occurred. Finally, with the TOSSTM simulation results on TinyBB, we show that the correctness of the transferred data is enhanced.

Address-Internetworking Scheme between Wireless Sensor Network and Internet Using TCP Port-Numbers (TCP 포트번호를 이용한 센서 네트워크와 인터넷(IPv4/IPv6)의 주소 연동)

  • Kim, Jeong-Hee;Kwon, Hoon;Kim, Do-Hyeu;Kwak, Ho-Young;Do, Yang-Hoi;Kim, Dae-Young;Byun, Yung-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.114-123
    • /
    • 2007
  • As a promising technology that enables ubiquitous computing and will lead the information technology industries of the next generation, the new field of sensor networks is one of the most active research topics today. From now on, each node, the network formation, and even the sensor network itself will interact with the generic network and evolve dynamically according to environmental changes, in a process of continual creation and extinction. In this paper, we propose a address-Internetworking scheme for interactive networking between a sensor network and the Internet based on the TCP port-numbers. The proposed scheme enables internetworking between a sensor network address scheme based on Zigbee and the Internet address scheme based on the Internet Protocol version 6 (IPv6). We implement the proposed address-Internetworking scheme using Berkeley TinyOS, Mica Motes, and IP. In addition we verify the proposed scheme by an interconnection experiment, which involves wireless sensor networks and the Internet, using IPv4/IPv6.

Conceptual Design of Networking Node with Real-time Monitoring for QoS Coordination of Tactical-Mesh Traffic (전술메쉬 트래픽 QoS 조율을 위한 네트워킹 노드의 개념 설계 및 실시간 모니터링)

  • Shin, Jun-Sik;Kang, Moonjoong;Park, Juman;Kwon, Daehoon;Kim, JongWon
    • Smart Media Journal
    • /
    • v.8 no.2
    • /
    • pp.29-38
    • /
    • 2019
  • With the advancement of information and communication technology, tactical networks are continuously being converted to All-IP future tactical networks that integrate all application services based on Internet protocol. Futuristic tactical mesh network is built with tactical WAN (wide area network) nodes that are inter-connected by a mesh structure. In order to guarantee QoS (quality of service) of application services, tactical service mesh (TSM) is suggested as an intermediate layer between infrastructure and application layers for futuristic tactical mesh network. The tactical service mesh requires dynamic QoS monitoring and control for intelligent QoS coordination. However, legacy networking nodes used for existing tactical networks are difficult to support these functionality due to inflexible monitoring support. In order to resolve such matter, we propose a tactical mesh WAN node as a hardware/software co-designed networking node in this paper. The tactical mesh WAN node is conceptually designed to have multi-access networking interfaces and virtualized networking switches by leveraging the DANOS whitebox server/switch. In addition, we explain how to apply eBPF-based traffic monitoring to the tactical mesh WAN node and verify the traffic monitoring feasibility for supporting QoS coordination of tactical-mesh traffic.

Source-Location Privacy in Wireless Sensor Networks (무선 센서 네트워크에서의 소스 위치 프라이버시)

  • Lee, Song-Woo;Park, Young-Hoon;Son, Ju-Hyung;Kang, Yu;Choe, Jin-Gi;Moon, Ho-Gun;Seo, Seung-Woo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.2
    • /
    • pp.125-137
    • /
    • 2007
  • This paper proposes a new scheme to provide the location privacy of sources in Wireless Sensor Networks (WSNs). Because the geographical location of a source sensor reveals contextual information on an 'event' in WSN, anonymizing the source location is an important issue. Despite abundant research efforts, however, about data confidentiality and authentication in WSN, privacy issues have not been researched well so far. Moreover, many schemes providing the anonymity of communication parties in Internet and Ad-hoc networks are not appropriate for WSN environments where sensors are very resource limited and messages are forwarded in a hop-by-hop manner through wireless channel. In this paper, we first categorize the type of eavesdroppers for WSN as Global Eavesdropper and Compromising Eavesdropper. Then we propose a novel scheme which provides the anonymity of a source according to the types of eavesdroppers. Furthermore, we analyze the degree of anonymity of WSN using the entropy-based modeling method. As a result, we show that the proposed scheme improves the degree of anonymity compared to a method without any provision of anonymity and also show that the transmission range plays a key role to hide the location of source sensors.

Nanostructured energy harvesting devices and their applications for IoT sensor networks (나노구조체 에너지 하베스팅 소자와 IoT 센서 네트워크의 융합 연구)

  • Yoon, Chongsei;Jeon, Buil;Yoon, Giwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.719-730
    • /
    • 2021
  • We have demonstrated a sandwich-type ZnO-based piezoelectric energy harvesting nanogenerator, namely ZCZ-NG device, composed of symmetrically stacked layers of ZnO/carbon tape/ZnO structure. Especially, we have adopted a conductive double-sided adhesive carbon tape in an effort to fabricate a high-quality ZCZ-NG device, leading to its superior output performance in terms of the peak-to-peak output voltage. Effects of the device size, ZnO layer thickness, and bending strain rate on the device performance have been investigated by measuring the output voltage. Moreover, to evaluate the effectiveness of the fabricated ZCZ-NG devices, we have experimentally implemented a sensor network testbed which can utilize the output voltages of ZCZ-NG devices. This sensor network testbed consists of several components such as Arduino-based transmitter and receiver nodes, wirelessly transmitting the sensed information of each node. We hope that this research combining the ZnO-based energy harvesting devices and IoT sensor networks will contribute to the development of more advanced energy harvester-driven IoT sensor networks in the future.