• Title/Summary/Keyword: common reinforced concrete

Search Result 129, Processing Time 0.02 seconds

Numerical investigation on punching shear of RC slabs exposed to fire

  • Sadaghian, Hamed;Farzam, Masood
    • Computers and Concrete
    • /
    • v.23 no.3
    • /
    • pp.217-233
    • /
    • 2019
  • This paper describes the numerical modelling of an interior slab-column connection to investigate the punching shear resistance of reinforced concrete (RC) slabs under fire conditions. Parameters of the study were the fire direction, flexural reinforcement ratio, load levels, shear reinforcement and compressive strength of concrete. Moreover, the efficiency of the insulating material, gypsum, in reducing the heat transferred to the slab was assessed. Validation studies were conducted comparing the simulation results to experiments from the literature and common codes of practice. Temperature dependencies of both concrete and reinforcing steel bars were considered in thermo-mechanical analyses. Results showed that there is a slight difference in temperature endurance of various models with respect to concrete with different compressive strengths. It was also concluded that compared to a slab without gypsum, 10-mm and 20-mm thick gypsum reduce the maximum heat transferred to the slab by 45.8% and 70%, respectively. Finally, it was observed that increasing the flexural reinforcement ratio changes the failure mode from flexural punching to brittle punching in most cases.

Effect of polymer addition on air void content of fine grained concretes used in TRCC

  • Daskiran, Esma Gizem;Daskiran, Mehmet Mustafa;Gencoglu, Mustafa
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.165-176
    • /
    • 2017
  • Textile Reinforced Cementitious Composite (TRCC) became the most common construction material lately and have excellent properties. TRCC can be employed in the manufacture of thin-walled facade elements, load-bearing integrated formwork, tunnel linings or in the strengthening of existing structures. These composite materials are a combination of matrix and textile materials. There isn't much research done about the usage of polymer modified matrices in textile reinforced cementitious composites. In this study, matrix materials named as fine grained concretes ($d_{max}{\leq}1.0mm$) were investigated. Air entraining effect of polymer modifiers were analyzed and air void content of fine grained concretes were identified with different methods. Aim of this research is to study the effect of polymer modification on the air content of fine grained concretes and the role of defoamer in controlling it. Polymer modifiers caused excessive air entrainment in all mixtures and defoamer material successfully lowered down the air content in all mixtures. Latex polymer modified mixtures had higher air content than redispersible powder modified ones. Air void analysis test was performed on selected mixtures. Air void parameters were compared with the values taken from air content meter. Close results were obtained with tests and air void analysis test found to be useful and applicable to fine grained concretes. Air void content in polymer modified matrix material used in TRCC found significant because of affecting mechanical and permeability parameters directly.

Behavior of RC columns strengthened with NSM and hybrid FRP under pure bending: Experimental and analytical study

  • Mohsen A. Shayanfar;Mohammad Ghanooni-Bagha;Solmaz Afzali
    • Computers and Concrete
    • /
    • v.34 no.4
    • /
    • pp.393-408
    • /
    • 2024
  • In recent decades the strengthening of reinforced concrete (RC) structural elements using Fiber-reinforced polymer (FRP) has received much attention. The behavior of RC elements can vary from axial compression to pure bending, depending on their loading. When the compressive behavior is dominant, the FRP jacket application is common, but when the flexural behavior is prevalent, the codes consider the FRP jacket ineffective. Codes suggest applying FRP bars or strips as Near-surface Mounted (NSM) or Externally Bonded (EB) in the tensile face to strengthen the beams under flexure. To strengthen the columns in tension-control mode, some researchers have suggested NSM FRP bars in both tension and compression faces alone or with the FRP jacket (hybrid). However, the number of tests that evaluate the pure bending of the strengthened columns as one of the pivotal points of the axial force-moment interaction curve is limited. In this paper, 11 RC elements strengthened using the NSM (in both tension and compression faces) or hybrid method were subjected to bending to assess the effect of the amount and material type of the FRP bar and jacket and the dimensions of the groove. The test results revealed that the NSM method increased the flexural capacity of the members between 10% to 50%. Furthermore, using the hybrid method increased the capacity between 51% to 91%. Finally, an analytical model was presented considering the effect of the NSM FRP bond in different circumstances, and its results were in good agreement with the experimental results.

Effectiveness of R/C jacketing of substandard R/C columns with short lap splices

  • Kalogeropoulos, George I.;Tsonos, Alexander G.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.273-292
    • /
    • 2014
  • The effectiveness of a retrofitting method for concrete columns with particular weaknesses is experimentally evaluated and presented in this paper. Structural deficiencies namely the inadequacy of transverse reinforcement and short length of lap splices are very common in columns found in structures built prior to the 1960s and 1970s. Recent earthquakes worldwide have caused severe damages and collapses of these structures. Nevertheless, the importance of improving the load transfer capacity between the deficiently lap-spliced bars is usually underestimated during the strengthening procedures applied in old buildings, though critical for the safety of the residents' lives. Thus, the seismic performance of the enhanced columns is frequently overestimated. The retrofitting approach presented herein involves reinforced concrete jacketing of the column sub-assemblages and welding of the lap-spliced bars to prevent the splice failure and conform to the provisions of modern design Codes. The cyclic lateral loading response of poorly confined original column specimens with insufficient lap splices and the seismic behavior of the retrofitted columns are compared. Test results clearly demonstrate that the retrofitting procedure followed is an effective way of significantly improving the seismic performance of substandard columns found in old buildings.

Seismic performance of a 10-story RC box-type wall building structure

  • Hwang, Kyung Ran;Lee, Han Seon
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1193-1219
    • /
    • 2015
  • The purpose of this study is to evaluate the seismic performance of high-rise reinforced concrete (RC) box-type wall structures commonly used for most residential buildings in Korea. For this purpose, an analytical model was calibrated with the results of the earthquake simulation tests on a 1:5 scale 10-story distorted model. This calibrated model was then transformed to a true model. The performance of the true model in terms of the stiffness, strength, and damage distribution through inelastic energy dissipation was observed with reference to the earthquake simulation test results. The model showed high overstrength factors ranging from 3 to 4. The existence of slab in this box-type wall system changed the main resistance mode in the wall from bending moment to tension/compression coupled moment through membrane actions, and increased the overall resistance capacity by about 25~35%, in comparison with the common design practice of neglecting the slab's existence. The flexibility of foundation, which is also commonly neglected in the engineering design, contributes to 30~50% of the roof drift in the stiff direction containing many walls. The possibility of concrete spalling and reinforcement buckling and fracture under the maximum considered earthquake (MCE) in Korea appears to be very low when compared with the case of the 2010 Concepcion, Chile earthquake.

Comparative in-plane pushover response of a typical RC rectangular wall designed by different standards

  • Dashti, Farhad;Dhakal, Rajesh P.;Pampanin, Stefano
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.667-689
    • /
    • 2014
  • Structural walls (also known as shear walls) are one of the common lateral load resisting elements in reinforced concrete (RC) buildings in seismic regions. The performance of RC structural walls in recent earthquakes has exposed some problems with the existing design of RC structural walls. The main issues lie around the buckling of bars, out-of plane deformation of the wall (especially the zone deteriorated in compression), reinforcement getting snapped beneath a solitary thin crack etc. This study compares performance of a typical wall designed by different standards. For this purpose, a case study RC shear wall is taken from the Hotel Grand Chancellor in Christchurch which was designed according to the 1982 version of the New Zealand concrete structures standard (NZS3101:1982). The wall is redesigned in this study to comply with the detailing requirements of three standards; ACI-318-11, NZS3101:2006 and Eurocode 8 in such a way that they provide the same flexural and shear capacity. Based on section analysis and pushover analysis, nonlinear responses of the walls are compared in terms of their lateral load capacity and curvature as well as displacement ductilities, and the effect of the code limitations on nonlinear responses of the different walls are evaluated. A parametric study is also carried out to further investigate the effect of confinement length and axial load ratio on the lateral response of shear walls.

Development of Prediction Model of Chloride Diffusion Coefficient using Machine Learning (기계학습을 이용한 염화물 확산계수 예측모델 개발)

  • Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.87-94
    • /
    • 2023
  • Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure's safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.

A Study on the Behavior of Chloride Ion in Hardened Cement Paste at Defferent Stages of Curing (재령에 따른 시멘트 경화체내 염화물 이온의 거동에 관한 연구)

  • 문소현;소승영;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.185-190
    • /
    • 1998
  • Corrosion of steel reinforcement is the most significant factor of deterioration in reinforced concrete structures. Chloride ion is considered one of the most common culprits on the corrosion of steels in concrete. The main objective of this study is understanding behavior of chloride ion in hardened cement pastes at different stages of curing. Cement pastes with water-cement ratio of 0.5 are allowed to hydrate in sealed containers for 28, 70, 180 days. And than pore solution is expressed. It was found that the $Cl^-$ concentrations in pore solution is decreased with increasing curing time in all Nacl addition level, the $OH^-$ concentrations is increased to 70 days but decrease at 180 days in all Nacl addition level. The $Cl^-$/$OH^-$ in pore solution is increased with increasing curing time in all Nacl addition level, however $Cl^-$/$OH^-$ of maximum Nacl addition level(Nacl 0.54% by weight of cement) is under the onset of depassivation level 0.3.

  • PDF

Effects of Chloride Binding on the Cement Hydration at early ages (초기재령에 있어 시멘트 수화에 따른 염화물 고정화 효과)

  • 문소현;소승영;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.437-442
    • /
    • 1999
  • Corrosion of steel reinforcment is the most significant factor of deterioration in reinforced concrete structures. Chloride ion is considered one of the most common culprits on the corrosion of steels in concrete. This study is effect of cement hydraulic degree on the chloride binding in hardened cement pastes. With increasing the cement hydration, cement products such as CSH and Ca(OH)2 were increased, and the part of added chloride were binded with them. With respect to A type, in first, the additional contents of chloride of 27.08mM/L in pore solution were reduced as 4.3mM/L at 3 days, 4.0mM/L at 7 days, 3.6mM/L at 28 days.

  • PDF

Cyclic load testing and numerical modeling of concrete columns with substandard seismic details

  • Marefat, Mohammad S.;Khanmohammadi, Mohammad;Bahrani, Mohammad K.;Goli, Ali
    • Computers and Concrete
    • /
    • v.2 no.5
    • /
    • pp.367-380
    • /
    • 2005
  • Recent earthquakes have shown that many of existing buildings in Iran sustain heavy damage due to defective seismic details. To assess vulnerability of one common type of buildings, which consists of low rise framed concrete structures, three defective and three standard columns have been tested under reversed cyclic load. The substandard specimens suffered in average 37% loss of strength and 45% loss of energy dissipation capacity relative to standard specimens, and this was mainly due to less lateral and longitudinal reinforcement and insufficient sectional dimensions. A relationship has been developed to introduce variation of plastic length under increasing displacement amplitude. At ultimate state, the length of plastic hinge is almost equal to full depth of section. Using calibrated hysteresis models, the response of different specimens under two earthquakes has been analyzed. The analysis indicated that the ratio between displacement demand and capacity of standard specimens is about unity and that of deficient ones is about 1.7.