• 제목/요약/키워드: commercial protease

Search Result 129, Processing Time 0.025 seconds

Production Condition and Characterization of Extracellular Protease from Micrococcus sp. HJ-19 (Micrococcus sp. HJ19에서 체외분비 단백질 분해효소의 생산조건과 효소특성)

  • Cha, In-Tae;Oh, Yong-Sik;Cho, Woon-Dong;Lim, Chae-Sung;Lee, Je-Kwan;Lee, Oh-Seuk;Roh, Dong-Hyun
    • Korean Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.69-73
    • /
    • 2009
  • Proteases are degradative enzymes which hydrolyze a peptide bond between amino acids and they are abundantly applied to commercial field. In order to investigate optimal medium compositions of carbon and nitrogen source for enzyme production, modified STY medium containing 0.15% yeast extract were used as basal medium. When galactose was used as carbon source, enzyme activity showed 1.3 higher than that of glucose. For nitrogen source addition of casamino acids to basal medium in place of tryptone showed lowest activity, whereas addition of malt extract showed maximal activity. The optimum temperature and pH of extracellular protease were found to be $35^{\circ}C$ an pH 8.5.

Rapid Enzymatic Fermentation of Anchovy Sauce by Protease

  • Jeong, Yong-Jin;Seo, Ji-Hyung
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.3
    • /
    • pp.213-217
    • /
    • 2004
  • We evaluated the possibility of rapid fermentation of anchovy sauce using a commercial protease. The fermentation characteristics were monitored by response surface analysis. The content of total nitrogen was high (around 1 %) with fermentation at 51.7~57.5$^{\circ}C$ after 10.2~16.4 hours, but rapidly decreased at higher temperatures (6$0^{\circ}C$ or over), while the $R^2$ of polynomial equation was 0.9185 (p<0.05). The amino acid content rapidly decreased to approximately 600 mg% and less at high temperature (6$0^{\circ}C$ and over), and the $R^2$ was 0.9578 (p<0.01). The free amino acids were affected more by fermentation time when fermentation temperature was lower, and the $R^2$ for total free amino acids was 0.8496 (p<0.10). The $R^2$ for sweet free amino acids was 0.9144 (p<0.05). According to the results of this study, the optimal conditions for anchovy sauce fermentation were predicted to be 52.5~56.9$^{\circ}C$ and 13.3~16.4 hours, and the predicted values and actual values of each response variable were similar to each other when the fermentation was performed at a random point within the optimal range. Also, the comparison of the quality between the quick anchovy sauce and sauces currently on the market showed that the content of sweet amino acids was higher in the former than in the latter.

Isolation of Pseudoalteromonas sp. HJ 47 from Deep Sea Water of East Sea and Characterization of its Extracellular Protease (동해 심층수로부터 Pseudoalteromonas sp. HJ 47의 분리 및 체외단백질분해효소 특성)

  • Cha, In-Tae;Lim, Hayung-Joon;Roh, Dong-Hyun
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.272-278
    • /
    • 2007
  • Proteases are enzymes that break peptide bonds between amino acids of other proteins and occupy a crucial position with respect to their applications in both physiological and commercial fields. In order to screen new source of protease, bacteria producing extracellular proteases at low temperature were isolated from deep sea water of East Sea, Korea. A bacterium showing the best growth rate and production of an extracellular protease at low temperature was designated HJ 47. The DNA sequence analysis of the 16S rRNA gene, phenotypic tests and morphology led to the placement of this organism in the genus Pseudoalteromonas. Although maximal growth was observed at $37^{\circ}C$, enzyme production per culture time was maximum at $20^{\circ}C$. At this temperature, extracellluar protease production was detected from the end of the exponential phage to stationary phase, and maximal at 15 hours after initial production. The optimum temperature and pH of the protease were found to be $35^{\circ}C$ and 8.

Fermentation and Quality Characteristics of Cheonggukjang Fermented with Bacillus subtilis BC-P1 (Bacillus subtilis BC-P1 균주를 이용하여 제조한 청국장의 발효 및 품질 특성분석)

  • Park, Sung-Yong;Bang, Mi-Ae;Oh, Boung-Jun;Park, Jeong-Hoon;Song, Won-Seob;Choi, Kyung-Min;Choung, Eui-Su;Boo, Hee-Ock;Cho, Seung-Sik
    • Korean Journal of Microbiology
    • /
    • v.49 no.3
    • /
    • pp.262-269
    • /
    • 2013
  • The object of this study was to improve the quality of Cheonggukjang with new starter, Bacillus subtilis BC-P1. Twenty strains were isolated from the commercial cheonggukjang and 1 Bacillus strain (BC-P1) with protease activity was selected. The 16S rRNA gene sequence revealed that the BC-P1 was closely related to B. subtilis with 99% homology. The quality characteristics of chunggukjang fermented with B. subtilis BC-P1, Bacillus nato (PC) and commercial chunggukjang (NC) were investigated. The characteristics of fermentation were determined by protease, lipase, xylanase, chitinase, and fibrinolytic activities, reducing sugar, nutrient composition and amino acid contents of cheonggukjang sample. Cheonggukjang fermented with B. subtilis BC-P1 showed the strongest fibrinolytic, xylanase, and chitinase activities. Reducung sugar contents of Cheonggukjang samples were $30.16{\pm}2.11$ mg/g (NC), $28.56{\pm}1.52$ mg/g (PC), $32.39{\pm}1.87$ mg/g (BC-P1). And their total amino acid contents were 338.99 mg% (NC), 445.19 mg% (PC), 741.35 mg% (BC-P1). These results suggested that B. subtilis BC-P1 was suitable to be used as a starter to enhance the quality and effects of cheonggukjang.

Preparation of Whelk Internal Organ Jeotgal with the Addition of Commercial Proteolytic Enzymes (상업용 단백질 가수분해 효소를 첨가한 골뱅이 내장 젓갈의 제조)

  • Oh, Jeong-Hoon;Koo, Myung-O;Lee, Kyung-Eun;Lee, Seung-Cheol
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.570-576
    • /
    • 2002
  • For the utilization of the by-products of whelk processing, whelk internal organ with the addition of commercial proteolytic enzymes - Flavourzyme, Neutrase, Protease NP, Prozyme - were used to make jeotgal, Korean traditional salted and fermented seafood sauce. The products were prepared at salt concentration of 25% with enzyme contents 0.05 and 0.1%. The samples were stored at $10^{\circ}C$ and the chemical properties were evaluated for 6 months. The pH in all samples were decreased from near 6.8 in the beginning stage to 6.1-6.4 in the final stage of incubation. Amino nitrogen of jeotgal increased with enzyme concentration and showed maximum value, 646 mg%, at 0.1% of Flavourzyme. Total nitrogen content was increased till four months, but rapidly decreased after that. Protein degradations of whelk internal organ during maturation of jeotgals were investigated by SDS-PAGE. The patterns of degradation were different with added enzymes.

A Study on the Proteolysis of Mussel Protein by a Commercial Enzyme Preparation (단백질 분해효소에 의한 홍합 단백질의 분해에 관한 연구)

  • Choi, In-Jae;Nam, Hee-Sop;Shin, Zae-Ik;Lee, Byong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.519-523
    • /
    • 1992
  • The patterns on the proteolysis of mussel protein using a commercial enzyme preparation were investigated. The best one among six commercial enzyme preparations for the manufacture of mussel extract was Corolase PP, based on the degree of hydrolysis (DH). When the raw mussel paste, without water addition, was adjusted to pH 6.5, added 0.1% (w/w dry basis) of Corolase PP. and reacted at $50^{\circ}C$ for four hours, it reached the maximum value of DH (79%). The precooking of raw mussel decreased the efficiency of extraction and hydrolysis of the protein, due to the inactivation of the autolytic enzymes contained in the mussel. During the course of proteolysis, major free amino acids such as glycine, alanine, glutamic acid and lysine, representing a characteristic brothy taste of mussel were replaced with free hydrophobic amino acids including valine, methionine, isoleucine, and leucine. The electrophoretic pattern and HPLC-GPC pattern of mussel protein hydrolysates during the hydrolysis were observed and also discussed.

  • PDF

Characteristics of Volatile Flavor Compounds in Kochujang Prepared with Commercial Enzyme During Fermentation (효소제를 사용한 개량식고추장의 숙성과정 중 휘발성 향기성분의 특성)

  • Choi, Jin-Young;Lee, Taik-Soo
    • Applied Biological Chemistry
    • /
    • v.46 no.3
    • /
    • pp.207-213
    • /
    • 2003
  • Kochujang was prepared for this study with raw material inoculated by commercial enzyme of amylase and protease. Volati1e compounds of Kochujang were analyzed using a purge and trap method during fermentation and identified with GC-MSD. Total 54 kinds of volatile flavor components like 16 kinds of alcohol, 16 kinds of ester, 7 kinds of acid, 4 kinds of aldehyde, 2 kinds of alkane, 1 kind of benzene, 3 kinds of ketone, 1 kind of alkene, 2 kind of amine, 1 kind of phenol, other 1 were found. Total number of volatile flavor detected right after manufacturing were 23 kinds like 3 kinds of alcohol, 6 kinds of ester, 3 kinds of aldehyde. After 30 days storage, total number of volatile flavor went up to 31 kinds with addition of 4 kinds of alcohol, 1 kind of ester. The total number of volatile flavor after 120 days storage were increased to 49 kinds. Volatile flavor compounds detected during the storage period were total 20 kinds like 6 kinds of alcohol such as 2-methyl-1-propanol, ethanol, 3-methyl-1-butanol, 5 kinds of ester such as ethyl acetate, isoamyl acetate, ethyl butyrate, 3 kinds of aldehyde such as butanal, acetaldehyde and 6 kinds of others. Even though peak area % of flavor compound varied depends on fermentation period, ethanol, ethyl acetate, ethyl butyrate, ethenone, 2-methyl-1-propanol, 3-methyl-1-butanol were the main compounds that consisted of flavor from Kochujang which was made with enzyme treatment. Ethly acetate showed the highest result in the treatment of right after manufacturing, 3-methyl-1-butanol had up to 90th day and ether were the other days.

Quality Characteristics of Apple Kochujang Prepared with Different Meju during Fermentation (개량메주 종류에 따른 사과고추장의 숙성중 품질 특성)

  • 서지형;정용진;서정식
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.4
    • /
    • pp.513-518
    • /
    • 2003
  • Three kind of apple kochujangs were prepared using different commercial meju (normal commercial product, two commercial product from Aspergilius sp. and Bacillus sp.) and investigated about characteristics. The contents of total free sugar were the highest, 22.43% in apple kochujang (II) after 10 week fermentation. The glucose was specially high ratio in apple kochujang (III). The contents of total amino acid were 107.53~401.52 mg% in apple kochujang (I), 108.69~441.19 mg% in apple kochujang (II) and 106.82~423.28 mg% in apple kochujang (III). From the sensory evaluation after 12 weeks, the scores for flavor preference and total acceptability were the highest in apple kochujang (III). There was no significant difference for taste and color in apple kochujangs.

Characterization of an Antarctic alkaline protease, a cold-active enzyme for laundry detergents (세탁세제 첨가용 효소 개발을 위한 남극 해양세균 유래 저온성 단백질분해효소의 특성 연구)

  • Park, Ha Ju;Han, Se Jong;Yim, Joung Han;Kim, Dockyu
    • Korean Journal of Microbiology
    • /
    • v.54 no.1
    • /
    • pp.60-68
    • /
    • 2018
  • A cold-active and alkaline serine protease (Pro21717) was partially purified from the Antarctic marine bacterium Pseudoalteromonas arctica PAMC 21717. On a zymogram gel containing skim milk, Pro21717 produced two distinct clear-zones of approximately 37 kDa (low intensity) and 74 kDa (high intensity). These were found to have identical N-terminal sequences, suggesting they arose from an identical precursor and that the 37 kDa protease might homodimerize to the more active 74 kDa form of the protein. Pro21717 displayed proteolytic activity at $0-40^{\circ}C$ (optimal temperature of $40^{\circ}C$) and maintained this activity at pH 5.0-10.0 (optimal pH of 9.0). Notably, relative activities of 30% and 45% were observed at $0^{\circ}C$ and $10^{\circ}C$, respectively, in comparison to the 100% activity observed at $40^{\circ}C$, and this enzyme showed a broad substrate range against synthetic peptides with a preference for proline in the cleavage reaction. Pro21717 activity was enhanced by $Cu^{2+}$ and remained stable in the presence of detergent surfactants (linear alkylbenzene sulfonate and sodium dodecyl sulfate) and other chemical components ($Na_2SO_4$ and metal ions, such as $Ba^{2+}$, $Mg^{2+}$, $Ca^{2+}$, $Zn^{2+}$, $Fe^{2+}$, $K^+$, and $Na^{2+}$), which are often included in commercial detergent formulations. These data indicate that the psychrophilic Pro21717 has properties comparable to the well-characterized mesophilic subtilisin Carlsberg, which is commercially produced by Novozymes as the trademark Alcalase. Thus it has the potential to be used as a new additive enzyme in laundry detergents that must work well in cold tap water below $15^{\circ}C$.

Isolation of Pseudoxanthomonas sp. W12 and WD32 Producing Extracellular Protease (단백질분해효소를 생산하는 Pseudoxanthomonas sp. WD12와 WD32의 분리)

  • Cho, Woon-Dong;Lee, Je-Kwan;Lim, Chae-Sung;Park, A-Rum;Oh, Yong-Sik;Roh, Dong-Hyun
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.63-67
    • /
    • 2010
  • Proteases catalyze hydrolytic cleavage of a peptide bond between amino acids and occupy pivotal positions in application in physiological and commercial fields. During the screening for novel bacteria producing extracellular protease, two bacterial strains, WD12 and WD32, were isolated from rotten trees and they made clear zone on LB plates supplemented with 1% skim milk. The similarities of 16S rRNA gene sequence of either WD12 or WD32 to GenBank database showed the highest to Pseuoxanthomonas mexicana as 97.8 and 99.8%, respectively. Phylogenetic analysis showed that both isolated was located within the cluster comprising P. mexicana and P. japonesis. WD12 and WD32 were catalase- and oxidase-positive, Gram-negative rod strains. In case of WD12, it could assimilate malate, but could not assimilate D-mannose, which were different characteristics from P. mexicana. Both Pseuoxanthomonas sp. WD12 and WD32 optimally produced extracellular protease at $35-37^{\circ}C$, and maximal activity showed as 656 unit/ml and 267 unit/ml, respectively.