• 제목/요약/키워드: commercial aircraft

검색결과 257건 처리시간 0.026초

가스터빈 엔진의 장착성능 해석을 위한 흡입구 2D 모델링에 관한 연구 (A Study on 2D Modelling of Gas Turbine Engine Intake for Installed Performance Analysis)

  • 공창덕;고성희;기자영;전용민
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.335-338
    • /
    • 2007
  • 본 연구에서는 항공기 추진기관의 정확한 장착 성능해석 시 고려하여 할 주요 장착 손실 중 흡입구의 압력 손실을 계산하기 위해 2D 모델링을 수행하였으며 해석 결과를 이용하여 비행마하수와 유량에 따른 흡입구 압력손실 값을 나타낸 0D 성능 맵을 생성하였다. 이러한 성능 맵 생성 절차의 타당성을 검증하기 위해 일반적인 항공기용 엔진 흡입구 형상에 적용하여 타당성을 확인하였다.

  • PDF

Effect of graphite particulate on mechanical properties of glass fibre reinforced composite

  • Bhattacharjee, Antara;Roy, Kanchan;Nanda, B.K.
    • International Journal of Aerospace System Engineering
    • /
    • 제7권1호
    • /
    • pp.16-20
    • /
    • 2020
  • The recent trend is increasing towards the usage of polymer matrix composites since they have a wide variety of applications. They have applications in the field of aircraft and space industry, sporting goods, medical devices, marine and automotive applications and also in commercial usage. The most commonly used fibre-reinforced polymer matrix composite is Glass fibre reinforced epoxy (GFRE) composite which is used in aviation, sports and automotive industries. However, the strength of GFRE composites is not adequate for structural applications. Therefore, the current research focuses on increasing the strength of GFRE composites by reinforcing with micro Graphite (Gr) particulates. The Gr used is an ultra-fine powder with particle size 250 ㎛. Gr is known to have good wear resistance, thermal conductivity and can operate at high temperatures. Gr particulates are mixed with the epoxy matrix in various weight ratios. Hand-lay technique is used for fabricating the composites. Mechanical properties such as tensile strength, elongation, compressive strength and flexural strength are obtained experimentally to study the effect of change in Gr content (0-5 wt. %). The tests were done as per ASTM standards.

BARAM: 전산유체 해석을 위한 가상풍동 시스템 (BARAM: VIRTUAL WIND-TUNNEL SYSTEM FOR CFD SIMULATION)

  • 김민아;이중연;구기범;허영주;이세훈;박수형;김규홍;조금원
    • 한국전산유체공학회지
    • /
    • 제20권4호
    • /
    • pp.28-35
    • /
    • 2015
  • BARAM system that means 'wind' in Korean has been established as a virtual wind tunnel system for aircraft design. Its aim is to provide researchers with easy-to-use, production-level environment for all stages of CFD simulation. To cope with this goal an integrated environment with a set of CFD solvers is developed and coupled with an highly-efficient visualization software. BARAM has three improvements comparing with previous CFD simulation environments. First, it provides a new automatic mesh generation method for structured and unstructured grid. Second, it also provides real-time visualization for massive CFD data set. Third, it includes more high-fidelity CFD solvers than commercial solvers.

자연층류 익형 설계 및 시험 (Design and Wind Tunnel Tests of a Natural Laminar Flow Airfoil)

  • 이융교;김철완;심재열;김응태;이대성
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.354-357
    • /
    • 2008
  • Drag reduction is one of main concerns for commercial aircraft companies than ever because fuel price has been tripled in ten years. In this research, Natural Laminar Flow airfoil is designed and tested to reduce drag at cruise condition, $c_l$=0.3, Re=3.4${\times}$10$^6$ and M=0.6. NLF airfoil is characterized by delayed transition from laminar to turbulent flow, which comes from maintaining favorable pressure gradient to downstream. Transition is predicted by solving Boundary Layer equations in viscous boundary layer and by solving Euler Equation outside the boundary layer. Once boundary layer thickness and momentum thickness are obtained, $e^N$-method is used for transition point prediction. As results, KARI's NLF airfoil is designed and shows better characteristics than NLF-0115. The characteristics are tested and verified at low Reynolds numbers, but at high Reynolds numbers, laminar flow characteristics are not obtainable because of fully turbulent flow over airfoil surfaces. Precious experiences, however, relating NLF airfoil design, subsonic and transonic tests are acquired.

  • PDF

성형툴의 상태에 따른 탄소섬유강화 복합재 구조물의 변형 예측 (Prediction of Deformation of Carbon-fiber Reinforced Polymer Matrix Composite for Tool Materials and Surface Conditions)

  • 성수환;김위대
    • Composites Research
    • /
    • 제27권6호
    • /
    • pp.231-235
    • /
    • 2014
  • 오토클레이브 성형은 성형제품의 품질은 우수하나 생산비용이 비싸다는 단점이 있다. 생산비용 중에서도 큰 비중을 차지하는 것이 성형툴의 제작공정이다. 따라서 본 연구에서는 생산비용 절감을 위한 선행 연구로서 성형툴의 재질 및 표면상태에 따라 L-shape 제품의 성형후 Spring-in을 Abaqus user subroutine을 이용하여 계산하였고, 열팽창계수와 마찰계수에 따른 결과를 나타내었다. 또한 성형툴 제작시 재질 및 표면상태의 기준점을 제시하여 생산비용을 줄이는데 기여하고자 한다.

PCB회로 보드장치내의 안정적 방열설계를 위한 연구 (The stable design of radiant heat inside PCB circuit board device)

  • 원종운;이종휘
    • 대한안전경영과학회지
    • /
    • 제15권2호
    • /
    • pp.129-134
    • /
    • 2013
  • In this study, the heat flow analysis compatible commercial code CFX 11 was used to develop the structure inside PCB circuit board devices, which could stable radiant heat as well as the cooling device within it. In case of modifying the arrangement of electronic parts on the PCB inside the multi channel temperature measurement board devices, radiant heat effects did not show a rising tendency, whereas the overall temperature went down in case of installing the vents in the outer case of PCB circuit board devices. In terms of installation location, it was the most appropriate to install it on the electronic parts with no heat. Besides, in case of mounting the fan as a cooling device by considering various user environments for multi channel temperature measurement board devices, the radiant heat effects were shown higher than in case of installing the vents, and the middle sections were the most appropriate to its installation location. In case of changing the wind quantity of the fan from its selected installation location, the best radiant heat effects were shown at high speed as expected.

소형 다중분광 항공촬영 시스템(PKNU 3호) 개발에 관한 연구 (Research for development of small format multi -spectral aerial photographing systems (PKNU 3))

  • 이은경;최철웅;서영찬;조남춘
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2004년도 추계학술발표회 논문집
    • /
    • pp.143-152
    • /
    • 2004
  • Researchers seeking geological and environmental information, depend on remote sensing and aerial photographic datum from various commercial satellites and aircraft. However, adverse weather conditions as well as equipment expense limit the ability to collect data anywhere and anytime. To allow for better flexibility in geological and environmental data collection, we have developed a compact, multi-spectral automatic Aerial Photographic system (PKNU2). This system's Multi-spectral camera can record visible (RGB) and infrared (NIR) band (3032*2008 Pixels) images Visible and infrared band images were obtained from each camera respectively and produced color-infrared composite images to be analyzed for the purpose of the environmental monitoring. However this did not provide quality data. Furthermore, it has the disadvantage of having the stereoscopic overlap area being 60% unsatisfied due to the 12 seconds of storage time of each data The PKNU2 system in contrast, photographed photos of great capacity Thus, with such results, we have been proceeding to develop the advanced PKNU2 (PKNU3) system that consists of a color-infrared spectral camera that can photograph in the visible and near-infrared bands simultaneously using a single sensor, a thermal infrared camera, two 40G computers to store images, and an MPEG board that can compress and transfer data to the computer in real time as well as be able to be mounted onto a helicopter platform.

  • PDF

Ground Test and Evaluation of a Flight Control Systemfor Unmanned Aerial Vehicles

  • Suk, Jin-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제5권1호
    • /
    • pp.57-63
    • /
    • 2004
  • UAV(Unmanned Aerial Vehicle) has become one of the most popularmilitary/commercial aerial robots in the new millennium. In spite of all theadvantages that UAVs inherently have, it is not an easv job to develop a UAVbecause it requires very systematic and complete approaches in full developmentenvelop. The ground test and evaluation phase has the utmost importance in thesense that a well-developed system can be best verified on the ground. In addition,many of the aircraft crashes in the flight tests were resulted from the incompletedevelopment procedure. In this research, a verification procedure of the wholeairbome integrated system was conducted including the flight management system.An airbome flight control computer(FCC) senses the extemal environment from thepehpheral devices and sends the control signal to the actuating system using theassigned control logic and flight test strategy. A ground test station controls themission during the test while the downlink data are transferred from the flightmanagement computer using the serial communication interface. The pilot controlbox also applies additional manual actuating commands. The whole system wastested/verified on the wind-tunnel system, which gave a good pitch controlperformance with a preUspecified flight test procedure. The ground test systemguarantees the performance of fundamental functions of airbome electronic systemfor the future flight tests.

보전에 중점을 둔 신뢰성 (Reliability Centered Maintenance)

  • 김환중
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2002년도 추계공동학술대회
    • /
    • pp.199-204
    • /
    • 2002
  • 보전에 중점을 둔 신뢰성(RCM)은 1960년대 후반 상업용 항공기산업을 위해 개발되었고, 현재는 항공기 이외의 여러 장치에도 적용되고 있다. RCM은 예방보전계획을 수립하기 위한 방법으로 예방보전계획은 장치와 구조물의 안전성과 가동성 수준을 효율적이고 효과적으로 성취하게 한다. RCM은 장치와 구조물에 적용가능하면서 효율적인 예방보전요구를 확인하기 위해 결정논리나무를 사용한다. 결정논리를 통하여 보전작업의 실행 필요성에 대하여 최종적으로 판단한다. 본 연구에서는 IEC 60300-3-11을 중심으로 기기나 장치에 대한 RCM분석방법 및 운용방법에 대한 지침을 제공하고자 한다.

  • PDF

Influence of Impact from Anti-Aircraft Bullet on Rotorcraft Fuel Tank Assembly

  • Kim, Sung Chan;Kim, Hyun Gi
    • International Journal of Aerospace System Engineering
    • /
    • 제5권1호
    • /
    • pp.1-8
    • /
    • 2018
  • Military rotorcrafts are constantly exposed to risk from bullet impacts because they operate in a battle environment. Because bullet impact damage can be deadly to crews, the fuel tanks of military rotorcraft must be designed taking extreme situations into account. Fuel tank design factors to be considered include the internal fluid pressure, the structural stress on the part impacted, and the kinetic energy of bullet strikes. Verification testing using real objects is the best way to obtain these design data effectively, but this imposes substantial burdens due to the huge cost and necessity for long-term preparation. The use of various numerical simulation tests at an early design stage can reduce the risk of trial-and-error and improve the prediction of performance. The present study was an investigation of the effects of bullet impacts on a fuel tank assembly using numerical simulation based on SPH (smoothed particle hydrodynamics), and conducted using the commercial package, LS-DYNA. The resulting equivalent stress, internal pressure, and kinetic energy of the bullet were examined in detail to evaluate the possible use of this numerical method to obtain configuration design data for the fuel tank assembly.