• Title/Summary/Keyword: command feedrate

Search Result 11, Processing Time 0.159 seconds

Estimation of Sculptured Surface NC Machining Time (자유곡면 NC 절삭가공시간 예측)

  • 허은영;김보현;김동원
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.4
    • /
    • pp.254-261
    • /
    • 2003
  • In mold and die shops, NC machining process mainly affects the quality of the machined surface and the manufacturing time of molds and dies. The estimation of NC machining time is a prerequisite to measure the machining productivity and to generate a process schedule, which generally includes the process sequence and the completion time of each process. It is required to take into account dynamic characteristics in the estimation, such as the ac/deceleration of NC machine controllers. Intensive observations at start and end points of NC blocks show that a minimum feedrate, a key variable in a machining time model, has a close relation to a block distance, an angle between blocks, and a command feedrate. Thus, this study addresses regression models for the minimum feedrate estimation on short and long NC blocks considering these parameters. Furthermore, machining time estimation models by the four types of feedrate behaviors are suggested based on the estimated minimum feedrate. To show the validity of the proposed machining time model, the study compares the estimated with the actual machining time in the sculptured surface machining of several mold dies.

The Implement of 2-Step Motion Control Loop and Look Ahead Algorithm for a High Speed Machining (고속가공을 위한 2단계 모션 제어 루프와 선독 알고리즘의 구현)

  • 이철수;이제필
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.71-81
    • /
    • 2000
  • This paper describers a look ahead algorithm of PC-NC(personal computer numerical control). The algorithm is based on acceleration/deceleration before interpolation which doesn\`t include a command error and determines a feedrate value at the end point of each block(or start point of each block). The algorithm is represented as following; 1) calculating two maximum arrival feedrates(F$_1$,F$_2$) by an acceleration value, a command feedrate, and the distance of a NC block, 2) getting a tangent feedrate (F$_3$) of the adjacent blocks, 3) choosing a minimum value among these three feedrates, and 4) setting the value to a feedrate of a start point of the next block(or a end point of the previous block). The proposed look ahead algorithm was implemented and tested by using a commercial TROS(real time operation system) on the MS-Windows NT 4.0 in a PC platform. For interfacing to a machine, a counter board, a DAC board and a DIO board were used. The result of the algorithm increased a machining precision and a machining speed in many short blocks.

  • PDF

Cutting Force Regulation in Turning Using Sliding Mode Control (슬라이딩 모드 제어기를 응용한 선삭공정 절삭력 제어)

  • 박영빈;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.605-609
    • /
    • 1996
  • Continuous sliding mode control is applied to turning process for cutting force regulation. The highest feedrate compatible with the allowable cutting force is applied in rough cutting process such that maximum productivity is ensured and tool breakage is avoided. The programmed feedrate is overridden after the control algorithm is carried out. However, most CNC lathe manufacturers offer limited number of data bits far feedrate override, thus resulting in nonlinear behavior of the machine tools. Such nonlinearity brings “quantized” effect, and the optimal faedrate is rounded off before being fed into the CNC system. To compensate for this problem, continuous sliding mode control is applied. Conventional switching control law at a sliding surface is replaced by a smooth control interpolation in a selected boundary layer to avoid the excitation of high-frequency dynamics. Simulation results are presented in comparison with those obtained by applying adaptive control.

  • PDF

A study on the real-time NURBS interpolation algorithm (실시간 NURBS 보간 알고리즘에 관한 연구)

  • 최인휴;양민양
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.227-232
    • /
    • 2002
  • This paper presents an algorithm for general 2D and 3D NURBS interpolation and deals with command generation for 3 axes milling machining, including the feedrate control in order to meet two limitations, a geometrical accuracy and a dynamic restriction. Both of the maximum chordal error and the maximum acceleration specified by machine parameter lead to limit the allowable feedrate on the curvature of NURBS tool path. So, motion commands at every sampling time are continuously generated by those two limitations and programmed feedrate. Simulation results of interpolating several NURBS curves show that proposed NURBS algorithm is favorable in the machining free-form curve

  • PDF

Cutting force control of a CNC machine using disturbance observer (외란관측기를 이용한 CNC 공작기계의 절삭력 제어)

  • 손주형;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.660-663
    • /
    • 1997
  • In recent manufacturing process, the increase of productivity is required by reducing machining time with the increase of cutting force. However, the excessive increase of cutting force can cause tool breakage, and have a bad effect on both the manufacturing machine and the workpiece. Thus, it is necessary to estimate and control cutting force in real time during the process. In this study, use of disturbance observer is proposed for the indirect cutting force estimation. The estimated cutting force is used for the real time control of feedrate, making the actual cutting force follow the reference force command. Since the suggested method does not need an expensive sensor like a dynamometer, the method is expected to be used practically. By reducing the machining time resulting from making the actual cutting force follow the reference force, the increase of productivity are also expected, and the quality of cutting surface has been improved due to the adjusted feedrate. Besides, an actual constant cutting force guarantees the prevention of tool breakage. To show the effectiveness of the suggested cutting force control method, an experimental setup has been made without the force sensor, applied to several workpieces. Experiments show that the suggested method is superior to the conventional method operated by constant feedrate.

  • PDF

Control of a CNC Machining Center Using the Indirect Measurement of the Cutting Force (절삭력 간접 측정을 이용한 CNC공작기계 제어)

  • 송진일;손주형;권동수;김성권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.9-20
    • /
    • 1998
  • In recent manufacturing process, the increase of productivity has been attempted by reducing machining time with the increase of cutting force. However, the excessive increase of cutting force can cause tool breakage and have a bad effect on both manufacturing machine and workpiece. Thus, it is necessary to estimate and control the cutting force in real time during the process. In this study, use of disturbance observer is proposed for the indirect cutting force estimation. The estimated cutting force is used for the real-time control of feedrate, making the actual cutting force follow the reference force command. Since the suggested method does not need an expensive sensor like a dynamometer, the method is expected to be used practically. Since the actual cutting force follow the reference force, resulting the reducing of the machining time the increase of productivity are also expected, and the quality of cutting surface has been improved due to the adjusted feedrate. Besides, an actual constant cutting force guarantees the prevention of tool breakage. To show the effectiveness of the suggested cutting force control method, an experimental setup has been made without sensor and applied to several workpieces. Experiments show that the suggested method is effective to cutting force control of a CNC machining center.

  • PDF

Adaptive Cross-Coupling Control System Considering Cutting Effects (절삭효과를 고려한 적응 교차축 연동제어 시스템)

  • Ji, Seong-Cheol;Yu, Sang-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1480-1486
    • /
    • 2002
  • In this study, the cross-coupling control (CCC) with three new features is proposed to maintain contour precision in high-speed nonlinear contour machining. One is an improved contour error model that provides almost exact calculation of the errors. Another is the utilization of variable controller gains based on the instantaneous curvature of the contour and the variable command. For this scheme, a stability is analyzed. As a result, the stability region is obtained, and the variable gains are decided within that region. The other scheme in the proposed CCC is a real-time feedrate adaptation module to regulate cutting force fur better surface finish through regulation of material removal rate (MRR). The simulation results show that the proposed CCC system can provide better precision than the existing method particularly in high-speed machining of nonlinear contours.

A Newly Developed KIMMBOT II Controller (KIMMBOT II 제어기의 재구성)

  • Yea, I.T.;Kim, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.986-989
    • /
    • 1988
  • The new controller which conststs of IBM-PC/AT, SBC, servo module and motor driver has been developed for KIMMBOT II robot. The servo module which controls two axes at the same time also has beendeveloped. This module inputs relative number of pulse and feedrate via multbus, after then outputs analog command voltage with reference to feedback pulses from the encoder of a motor. This system has a great flexibility. The reduction of parts gives more reliability.

  • PDF

Cross-Coupling Controller for High-Speed Nonlinear Contour Machining (고속의 비선형 윤곽가공을 위한 교차축 연동제어기)

  • Jee, Sung-Chul;Lee, Yong-Seok
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.446-451
    • /
    • 2000
  • In this paper, a new adaptive cross-coupling control (CCC) algorithm with an improved contour error model is proposed to maintain contouring precision in high-speed nonlinear contour machining. The proposed method utilizes variable controller gains based on the instantaneous curvature of a contour and the feedrate command. The proposed method is evaluated and compared with the conventional CCC for nonlinear contouring motion through computer simulations. The simulation results show that the proposed CCC improves the contouring accuracy more effectively than the existing method.

  • PDF

Adaptive Cross-Coupling Controller for Precision Contour Machining (정밀 윤곽가공을 위한 적응 교차축 연동제어기)

  • 윤상필;지성철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.8-13
    • /
    • 2000
  • In this paper, a new adaptive cross-coupling control (CCC) method with an improved contour error model is proposed to maintain contouring precision in high-speed nonlinear contour machining. The proposed method utilizes variable controller gains based on the instantaneous curvature of a contour and the feedrate command. In addition, a real-time federate adaptation scheme is included in the proposed CCC to regulate cutting force. The proposed method is evaluated and compared with the conventional CCC for nonlinear contouring motion through computer simulations. The simulation results show that the proposed CCC improves the contouring accuracy and regulates cutting force more effectively than the existing method.

  • PDF