• 제목/요약/키워드: combustion synthesis

검색결과 274건 처리시간 0.037초

Synthesis and Characterization of Energetic Thermoplastic Elastomers based on Carboxylated GAP Copolymers

  • Lim, Minkyung;Jang, Yoorim;Kweon, Jeong-Ohk;Seol, Yang-Ho;Rhee, Hakjune;Noh, Si-Tae
    • 공업화학
    • /
    • 제31권3호
    • /
    • pp.284-290
    • /
    • 2020
  • Energetic thermoplastic elastomers (ETPEs) based on glycidyl azide polymer (GAP) and carboxylated GA copolymers [GAP-ETPE and poly(GA-carboxylate)-ETPEs] were synthesized using isophorone diisocyanate (IPDI), dibutyltin dilaurate (DBTDL), 1,4-butanediol (1,4-BD), and soft segment oligomers such as GAP and poly(GA-carboxylate). The synthesized GAP-ETPE and poly(GA-carboxylate)-ETPEs were characterized by Fourier transform infrared (FT-IR), gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), universal testing machine (UTM), calorimetry and sensitivity towards friction and impact. DSC and TGA results showed that the introduction of carboxylate group in GAP helped to have better thermal properties. Glass transition temperatures of poly(GA-carboxylate)-ETPEs decreased from -31 ℃ to -33 ℃ compared to that of GAP-ETPE (-29 ℃). The first thermal decomposition temperature in poly(GA0.8-octanoate0.2)-ETPE (242 ℃) increased in comparison to that of GAP-ETPE (227 ℃). Furthermore, from calorimetry data, poly(GA-carboxylate)-ETPEs exhibited negative formation enthalpies (-6.94 and -7.21 kJ/g) and higher heats of combustion (46713 and 46587 kJ/mol) compared to that of GAP-ETPE (42,262 kJ/mol). Overall, poly(GA-carboxylate)-ETPEs could be good candidates for a polymeric binder in solid propellant due to better energetic, mechanical and thermal properties in comparison to those of GAP-ETPE. Such properties are beneficial to application and processing of ETPE.

DIP 및 BTMP 혼합비율에 따른 인쇄용지의 LCCO2 분석 (LCCO2 analysis of wood-containing printing paper by mixed ratio of de-inked pulp and BTMP)

  • 서진호;김형진;정성현;박광호
    • 펄프종이기술
    • /
    • 제45권2호
    • /
    • pp.46-55
    • /
    • 2013
  • Recently, there are growing interests on carbon emissions related in climate change which is worldwide emerging important issue. Some research works are now carrying out in order to reduce the carbon emission in pulp and paper industries by the synthesis of precipitated calcium carbonate using the exhaust carbon dioxide from combustion furnace or incinerator. However, for solving the original problems on carbon emission, we need to consider the analysis of basic methodology on $CO_2$ through the process efficiencies. There are two general tools for carbon emissions; one is the greenhouse gas inventory and the other is $LCCO_2$ method which is applied to particular items of raw materials and utilities in unit process. In this study, the carbon emissions in wood-containing printing paper production line were calculated by using $LCCO_2$ method. The general materials and utilities for paper production, such as fibrous materials, chemical additives, electric power, steam, and industrial water were analyzed. As the results, $Na_2SiO_3$ showed the highest loads in carbon emissions, and the total amount of carbon emissions was the highest in electricity. In the production line of printing paper using de-inked pulp and BTMP, as the mixing ratio of DIP was higher, the carbon emissions were decreased because of high use of electric power in TMP process.

연소합성법에 의한 발열성 다공질 MoSi2계 재료의 제조 (Fabrication of Porous MoSi2 material for Heating Element through Self-propagating High Temperature Synthesis Process)

  • 송인혁;윤중열;김해두
    • 한국세라믹학회지
    • /
    • 제41권1호
    • /
    • pp.62-68
    • /
    • 2004
  • 본 연구에서는 SHS 공정에 의하여 기공의 크기를 조절함으로서 전기저항 발열 특성을 가지는 다공성 $MoSi_2$를 제조하는 공정에 관하여 연구하였다. 결함이 억제된 다공질 재료를 제조하기 위하여 Si 함량 변화 및 예열 공정을 실시하였으며, 성형체 제조에 사용되는 Mo 분말의 크기 변화에 따른 가공 형성 거동에 대하여 연구하였다. 실험 결과 합성된 $MoSi_2$ 입자의 크기는 Mo 입자의 크기와는 관계없이 연소 합성시 발열되는 발열양에 의해 좌우되었으며, 기공의 크기는 Mo 입자의 크기에 따라 결정되었다. 또한 가공 경사 $MoSi_2$ 다공질 재료를 만들기 위하여 150-300${\mu}m$ Mo 분말과 4-5${\mu}m$ Mo 분말을 단계별로 5층으로 혼합하여 합성한 결과 거시적으로 순차적인 기공 크기 분포를 나타내었으며, 이를 통하여 포집 효율등이 우수한 다공성 발열체 재료의 제조가 가능하였다.

POLLUTION PREVENTION : ENGINEERING DESIGN AT MACRO-, MESO-, AND MICROSCALES

  • Allen, David T.
    • 청정기술
    • /
    • 제2권2호
    • /
    • pp.51-59
    • /
    • 1996
  • Billions of tons of industrial waste are generated annually in industrialized countries. Managing and legally disposing of these wastes costs tens to hundreds of billions of dollars each year, and these costs have been increasing rapidly. The escalation is likely to continue as emission standards become even more stringent around the world. In the face of these rapidly rising costs and rapidly increasing performance standards, traditional end-of-pipe approaches to waste management have become less attractive. The most economical waste management alternatives in many cases have become recycling of the waste or the redesign of chemical processes and products so that wastes are prevented or put to productive use. These strategies of recycling or reducing waste at the source have collectively come to be known as pollution prevention. The engineering challenges associated with pollution prevention are substantial. This presentation will categorize the challenges in three levels. At the most macroscopic level, the flow of materials in our industrial economy, from natural resource extraction to consumer product disposal, can be redesigned. Currently, most of our raw materials are virgin natural resources that are used once, then discarded. Studies in what has come to be called industrial ecology examine the material efficiency of large-scale industrial systems and attempt to improve that efficiency. A second level of engineering challenges is found at the scale of individual industrial facilities, where chemical processes and products can be redesigned so that waste is reduced. Finally, on a molecular level, chemical synthesis pathways, combustion reaction pathways, and other material fabrication procedures can be redesigned to reduce emissions of pollution and unwanted by-products. All of these design activities, shown in Figure 1, have the potential to prevent pollution. All involve the tools of engineering, and in particular, chemical engineering.

  • PDF

Ultralow-n SiO2 Thin Films Synthesized Using Organic Nanoparticles Template

  • Dung, Mai Xuan;Lee, June-Key;Soun, Woo-Sik;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권12호
    • /
    • pp.3593-3599
    • /
    • 2010
  • In an original effort, this lab attempted to employ polystyrene nanoparticles as a template for the synthesis of ordered and highly porous macroporous $SiO_2$ thin films, utilizing their high combustion temperature and narrow size distribution. However, polystyrene nanoparticle thin films were not obtained due to the low interaction between individual particles and between the particle and silicon substrate. However, polystyrene-polyacrylic acid (PS-AA) colloidal particles of a core-shell structure were synthesized by a one-pot miniemulsion polymerization approach, with hydrophilic polyacrylic acid tails on the particle surface that improved interaction between individual particles and between the particle and silicon substrate. The PS-AA thin films were spin-coated in the thickness ranges from monolayer to approximately $1.0\;{\mu}m$. Using the PS-AA thin films as sacrificial templates, macroporous $SiO_2$ thin films were successfully synthesized by vapor deposition or conventional solution sol-gel infiltration methods. Inspection with field emission scanning electron microscopy (FE-SEM) showed that the macroporous $SiO_2$ thin films consist of interconnected air balls (~100 nm). Typical macroporous $SiO_2$ thin films showed ultralow refractive indices ranging from 1.098 to 1.138 at 633 nm, according to the infiltration conditions, which were confirmed by spectroscopy ellipsometry (SE) measurements. This research shows how the synthetic control of the macromolecule such as hydrophilic polystyrene nanopaticles and silicate sol precursors innovates the optical properties and processabilities for actual applications.

Synthesis of Amorphous Er3+-Yb3+ Co-doped TiO2 and Its Application as a Scattering Layer for Dye-sensitized Solar Cells

  • Han, Chi-Hwan;Lee, Hak-Soo;Lee, Kyung-Won;Han, Sang-Do;Singh, Ishwar
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권1호
    • /
    • pp.219-223
    • /
    • 2009
  • $TiO_2$ doped with $Er^{3+\;and\;Yb^{3+}$ was used for fabricating a scattering layer and a nano-crystalline $TiO_2$ electrode layer to be used in dye-sensitized solar cells. The material was prepared using a new sol-gel combustion hybrid method with acetylene black as fuel. The $Er^{3+}$-$Yb^{3+}$ co-doped titanium oxide powder synthesized at 700oC had embossed structure morphology with a size between 27 to 54 nm that agglomerated to produce micron size particles, as observed by the scanning electron micrographs. The XRD patterns showed that the $Er^{3+}$-$Yb^{3+}$ co-doped titanium oxide had an amorphous structure, while using the same method without doping $Er^{3+}\;or\;Yb^{3+},\;TiO_2$ was obtained in the crystallite form with thea dominance of rutile phase. Fabricating a bilayer structure consisting of nano-crystalline $TiO_2$ and the synthesized $Er^{3+}$-$Yb^{3+}$ co-doped titanium oxide showed better scattering property, with an overall increase of 15.6% in efficiency of the solar cell with respect to a single nano-crystalline $TiO_2$ layer.

고효율의 리튬/공기 이차전지 공기전극용 Mn1+XCo2-XO4 고용체 촉매 합성 및 분석 (Synthesis and Characterizations of Mn1+XCo2-XO4 Solid Solution Catalysts for Highly Efficient Li/Air Secondary Battery)

  • 박인영;장재용;임동욱;김태우;심상은;박석훈;백성현
    • 전기화학회지
    • /
    • 제18권4호
    • /
    • pp.137-142
    • /
    • 2015
  • $Mn_{1+X}Co_{2-X}O_4$ solid solutions with various Mn/Co ratios were synthesized by a combustion method, and used as cathode catalysts for lithium/air secondary battery. Their electrochemical and physicochemical properties were investigated. The morphology was examined by transmission electron microscopy (TEM), and the crystallinity was confirmed by X-ray diffraction (XRD) analyses. For the measurement of electrochemical properties, charge and discharge measurements were carried out at a constant current density of $0.2mA/cm^2$, monitoring the voltage change. Electrochemical impedance spectroscopy (EIS) analyses were also employed to examine the change in charge transfer resistance during charge-discharge process. $Mn_{1+X}Co_{2-X}O_4$ solid solutions showed enhanced cycleability as a cathode of Li/air secondary battery, and the performance was found to be strongly dependent on Mn/Co ratio. Among synthesized catalysts, $Mn_{1.5}Co_{1.5}O_4$ exhibited the best performance and cycleability, due to high charge transfer rate.

바이오매스 합성가스 적용을 위한 LPG 엔진발전기 개조 및 성능평가 (Modification of an LPG Engine Generator for Biomass Syngas Application)

  • 엘리에젤 하비네자;홍성구
    • 한국농공학회논문집
    • /
    • 제64권5호
    • /
    • pp.9-16
    • /
    • 2022
  • Syngas, also known as synthesis gas, synthetic gas, or producer gas, is a combustible gas mixture generated when organic material (biomass) is heated in a gasifier with a limited airflow at a high temperature and elevated pressure. The present research was aimed at modifying the existing LPG engine generator for fully operated syngas. During this study, the designed gasifier-powered woodchip biomass was used for syngas production to generate power. A 6.0 kW LPG engine generator was modified and tested for operation on syngas. In the experiments, syngas and LPG fuels were tested as test fuels. For syngas production, 3 kg of dry woodchips were fed and burnt into the designed downdraft gasifier. The gasifier was connected to a blower coupled with a slider to help the air supply and control the ignition. The convection cooling system was connected to the syngas flow pipe for cooling the hot produce gas and filtering the impurities. For engine modification, a customized T-shaped flexible air/fuel mixture control device was designed for adjusting the correct stoichiometric air-fuel ratio ranging between 1:1.1 and 1.3 to match the combustion needs of the engine. The composition of produced syngas was analyzed using a gas analyzer and its composition was; 13~15 %, 10.2~13 %, 4.1~4.5 %, and 11.9~14.6 % for CO, H2, CH4, and CO2 respectively with a heating value range of 4.12~5.01 MJ/Nm3. The maximum peak power output generated from syngas and LPG was recorded using a clamp-on power meter and found to be 3,689 watts and 5,001 watts, respectively. The results found from the experiment show that the LPG engine generator operated on syngas can be adopted with a de-ration rate of 73.78 % compared to its regular operating fuel.

분말 제조 방법에 따른 Ni-Y2O3 소결 합금의 미세 구조 및 기계적 특성 평가 (Evaluation of Microstructures and Mechanical Properties of Ni-Y2O3 Sintered Alloys Based on the Powder Preparation Methods)

  • 정건우;차지호;장민서;오민석;박제신
    • 한국분말재료학회지
    • /
    • 제30권6호
    • /
    • pp.484-492
    • /
    • 2023
  • In this study, Ni-Y2O3 powder was prepared by alloying recomposition oxidation sintering (AROS), solution combustion synthesis (SCS), and conventional mechanical alloying (MA). The microstructure and mechanical properties of the alloys were investigated by spark plasma sintering (SPS). Among the Ni-Y2O3 powders synthesized by the three methods, the AROS powder had approximately 5 nm of Y2O3 crystals uniformly distributed within the Ni particles, whereas the SCS powder contained a mixture of Ni and Y2O3 nanoparticles, and the MA powder formed small Y2O3 crystals on the surface of large Ni particles by milling the mixture of Ni and Y2O3. The average grain size of Y2O3 in the sintered alloys was approximately 15 nm, with the AROS sinter having the smallest, followed by the SCS sinter at 18 nm, and the MA sinter at 22 nm. The yield strength (YS) of the SCS- and MA-sintered alloys were 1511 and 1688 MPa, respectively, which are lower than the YS value of 1697 MPa for the AROS-sintered alloys. The AROS alloy exhibited improved strength compared to the alloys fabricated by SCS and conventional MA methods, primarily because of the increased strengthening from the finer Y2O3 particles and Ni grains.

$Co_2$ 흡수법에 의한 환경시료중 $^{14}C$ 정량 (Determination of $^{14}C$ in Environmental Samples Using $CO_2$ Absorption Method)

  • 이상국;김창규;김철수;김용재;노병환
    • Journal of Radiation Protection and Research
    • /
    • 제22권1호
    • /
    • pp.35-46
    • /
    • 1997
  • $CO_2$ 흡수제와 액체섬광계수기를 이용하여 간단하고 정밀한 $^{14}C$ 정량법을 개발하였다. 또한, 대기 및 생물시료중 $^3H$$^{14}C$ 동시포집을 위한 대기시료 포집장치 및 연소장치를 개발하였다. 본 연구에서 개발한 대기중 $CO_2$ 포집장치의 포집율은 73-89%였으며 연소장치의 연소율은 97%를 나타내었다. 측정시료 조제시 흡수제와 섬광체와의 최적 혼합비는 1:1 였으며 측정시료중 $^{14}C$의 비방사능 농도는 시료조제 후 70일까지 변화하지 않고 매우 안정한 상태를 유지하였고 검출하한치는 0.025 Bq/gC로써 자연준위의 $^{14}C$ 분석에도 활용 가능하였다. 또한, 본 분석법에 의한 $^{14}C$ 분석결과는 벤젠합성범에 의한 결과와 ${\pm}6%$ 오차범위 내에서 상호간 잘 일치하였다. 본 연구에서 검토한 방법을 이용하여 1996년 10월 대전지역 대기중 $^{14}C$의 비방사능을 측정한 결과 0.26-0.27 Bq/gC의 범위로써 전형적인 자연준위를 나타내었다. 한편, 월성 원자력발전소로부터 lkm 떨어진 지점에서의 대기중 $^{14}C$C 비방사능은 $0.54{\pm}0.03$ Bq/gC였으며, 솔잎 및 채소류중 $^{14}C$의 비방사능은 각각 0.56-0.67 Bq/gC 및 0.23-1.41 Bq/gC의 농도범위를 나타내었다.

  • PDF