• Title/Summary/Keyword: combustion method

Search Result 1,731, Processing Time 0.028 seconds

Facile Synthesis of Hydroxyapatite by Hydrothermal and Solvent Combustion Methods

  • Bramhe, Sachin N;Lee, Hyun Chul;Chu, Min Cheol;Ryu, Jae-Kyung;Balakrishnan, Avinash;Kim, Taik Nam
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.492-496
    • /
    • 2015
  • Hydroxyapatite (HA), which is an important calcium phosphate mineral, has been applied in orthopedics, dentistry, and many other fields depending upon its morphology. HA can be synthesized with different morphologies through controlling the synthesis method and several parameters. Here, we synthesize various morphologies of HA using two simple methods: hydrothermal combustion and solution combustion. The phase purity of the synthesized HA is confirmed using X-ray diffractometry. It demonstrates that pure phased hydroxyapatite can be synthesized using both methods. The morphology of the synthesized powder is examined using scanning electron microscopy. The effects of pH and temperature on the final powder are also investigated. At $140^{\circ}C$, using the hydrothermal method, nano-micro HA rods with a hexagonal crystal structure can be synthesized, whereas using solution combustion method at $600^{\circ}C$, a dense cubic morphology can be synthesized, which exhibits monoclinic crystal structures.

A Study on the Effects of the Swirl Flow on the Distribution of Soot in the D.I. Diesel Engine (스월 유동이 직분식 디젤엔진 내의 Soot 분포에 미치는 영향에 관한 연구)

  • Lee, Gi-Hyeong;Jeong, Jae-U;Lee, Chang-Sik;Park, Hyeon-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.458-464
    • /
    • 2002
  • Recently, many researches have been performed to improve performances of the combustion and emission in the D.I.Diesel engine. Especially reduction of the soot formation in tole combustion chamber is the essential to acquire the improvement of the emission performance. These emission of the diesel combustion is effected by the characteristics of air-fuel mixing. Thus, in this study, the distribution of soot in the diesel combustion is measured by LII(laser induced incandescence) and LIS(Laser induced scattering) method. From this experimental results, it is confirmed that the swirl flow intensified by SCV(swirl control valve) is effective on the reduction of soot in the combustion chamber.

COMPARISON OF THE COMBUSTION CHARACTERISTICS BETWEEN S.I. ENGINE AND R.I. ENGINE

  • Chung, S.S.;Ha, J.Y.;Park, J.S.;Kim, K.J.;Yeom, J.K.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.19-25
    • /
    • 2007
  • This experimental study was carried out to obtain both low emissions and high thermal efficiency by rapid bulk combustion. Two kinds of experiments were conducted to obtain fundamental data on the operation of a RI engine by a radical ignition method. First, the basic experiments were conducted to confirm rapid bulk combustion by using a radical ignition method in a constant volume chamber (CVC). In this experiment, the combustion velocity was much higher than that of a conventional method. Next, to investigate the desirable condition of engine operation using radical ignition, an applied experiment was conducted in an actual engine based on the basic experiment results obtained from CVC condition. A sub-chamber-type diesel engine was reconstructed using a SPI type engine with controlled injection duration and spark timing, and finally, converted to a RI engine. In this study, the operation characteristics of the RI engine were examined according to the sub-chamber's specifications such as the sub-chamber volume and the diameter and number of passage holes. These experimental results showed that the RI engine operated successfully and was affected by the ratio of the passage hole area to the sub-chamber volume.

Combustion Characteristics of Domestic Anthracite with High-Pressure TGA (가압열중량분석기를 이용한 국내무연탄의 연소특성 해석)

  • 류호정;한근희;진경태;이계봉;최정후
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.243-252
    • /
    • 2001
  • Combustion characteristics of domestic anthracite coal were observed by high-pressure thermogravimetric analyzer with variation of pressure (1~16 atm) and heating rate (15, 20, $25^{\circ}C$/min) with non-iso-thermal method (temperature range : 25~100$0^{\circ}C$). Measured combustion reaction rate increased with increasing pressure. This result could be explained by the fact that the activation energy of coal combustion decreased with increasing pressure. Reaction order of coal combustion determined by Freeman and Carroll$^{[11]}$ method linearly increased from 1.04 to 1.30 and activation energy decreased from 47.37 to 14.42 Kcal/mol as pressure increased from 1 to 16 attn.

  • PDF

Combustion Efficiency Estimation Method of Solid Propellants and the Effects of Grain Shape using Closed Bomb Test (CBT를 이용한 고체 추진제의 연소효율 도출 방법과 그레인 형상의 영향 분석)

  • Jonggeun Park;Hong-Gye Sung;Wonmin Lee;Eunmi Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.6
    • /
    • pp.53-61
    • /
    • 2022
  • The estimation method of combustion efficiency has been introduced by using closed bomb test(CBT). The Noble-Abel equation of state was applied to consider the real gas effects to take account of high operation pressure about a couple of 100 atm. of CBT. The heat loss through the CBT wall was considered. The volume change of grain was calculated by applying form functions, which estimated combustion efficiency of 8 different gain shapes. The combustion estimation method proposed in this study was fairly validated by the comparision with the pressure-time history data of the CBT experiments. The effects of both grain shape and propellant loading density were analyzed.

Catalytic Combustion Characteristics of Hydrogen-Air Premixture in a Millimeter Scale Monolith Coated with Platinum (밀리미터 스케일 촉매 연소기에서의 수소-공기 예혼합 가스의 촉매 연소 특성)

  • Choi, Won-Young;Kwon, Se-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.1
    • /
    • pp.20-26
    • /
    • 2005
  • In the present study, catalytic combustion of hydrogen-air premixture in a millimeter scale monolith coated with Pt catalyst was investigated. As the combustor size decreases, the heat loss increases in proportion with the inverse of the scale of combustion chamber and combustion efficiency decreases in a conventional type of combustor. Combustion reaction assisted by catalyst can reduce the heat loss by decreasing the reaction temperature at which catalytic conversion takes place. Another advantage of catalytic combustion is that ignition is not required. Platinum was coated by incipient wetness method on a millimeter scale monolith with cell size of $1{\times}1mm$. Using this monolith as the core of the reaction chamber, temperatures were recorded at various locations along the flow direction. Burnt gas was passed to a gas chromatography system to measure the hydrogen content after the reaction. The measurements were made at various volume flow rate of the fuel-air premixture. The gas chromatography results showed the reaction was complete at all the test conditions and the reacting species penetrated the laminar boundary layer at the honeycomb and made contact with the catalyst coated surface. At all the measuring locations, the record showed monotonous increase of temperature during the measurement duration. And the temperature profile showed that the peak temperature is reached at the point nearest to the gas inlet and decreasing temperature along the flow direction.

  • PDF

An Experimental Assessment of Combustion Stability of Coaxial Swirl Injectors and an Impinging Injector through Simulating Combustion Test (상압기상연소시험을 통한 동축형 스월 분사기와 충돌형 분사기의 연소 안정성 평가)

  • Park, Junhyeong;Kim, Hongjip
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.1
    • /
    • pp.46-52
    • /
    • 2017
  • High-frequency combustion instabilities may occur during the development of feasible engine combustors. These instabilities can result in irreparable damages to the wall of combustors or the degradation of engine performance. So, it is essential to identify injectors that have high stability characteristics during the early stages of development. The objective of present study was to assess the stability of coaxial injectors and an impinging injector with different recess lengths in order to develop stable injectors optimally. Stability margin was evaluated based on the distance from operating condition to the unstable regions. A simulating combustion test method was used to analyze the stability of injectors. A small-scale combustion chamber was designed to simulate the first tangential acoustic mode of the actual combustor. Gaseous oxygen and a mixture of methane and propane were used as simulant propellants to satisfy their flow similarity to the actual propellants of a combustor in a liquid rocket combustor. The results indicated that injectors having small recess lengths showed relatively large combustion stability margins. For the injectors of large recess lengths, instability regions with large and super-large amplitude oscillations were observed. Thus, injector with shorter recess lengths had a higher stability than that of longer one due to the different mixing processes.

Combustion Stability Rating Test of Liquid Rocket Engine Thrust Chamber (액체로켓엔진 연소기 연소안정성 평가시험)

  • Ahn, Kyubok;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.60-66
    • /
    • 2014
  • As a evaluation method of combustion stability in a liquid rocket engine thrust chamber, external disturbance devices are used. In the paper, the study on pulse-gun ignition tests for a combustion stability rating test of a thrust chamber was performed. Charging volume of pulse-guns was determined by confirming the intensities of the pressure waves from the ignition tests in the cold-flow conditions. While using same injector head, combustion instabilities were not encountered during 14 hot-firing tests without pulse-guns but combustion instabilities were triggered by pulse-gun ignition during 2 hot-firing tests. The results showed that the pulse-gun ignition test could be the evaluation method and could reduce the hot-firing test number for the stability rating of a thrust chamber.

A Study on the Combustion Stability Evaluation of Double Swirl Coaxial Injector (이중 와류 동축형 분사기의 연소안정성 평가에 관한 연구)

  • ;;;Kim, Hong-Jip;Choe, Hwan-Seok;Lee, Su-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.41-47
    • /
    • 2006
  • A liquid rocket thrust chamber should have a high confidence in its combustion performance and combustion stability. Expecially, the injector of which function is spraying and mixing propellants plays an important role in getting the confidence. This study was carried out to evaluate combustion stability of a double swirl coaxial injector by using the model similarity method. Besides, in case of a baffle which was used to improve combustion stability, the length and gap effects of the baffle were investigated.

A Study on the Spray Characteristics of Flash Boiling Using Two Component Mixing Fuel (2성분 혼합연료를 이용한 감압비등 분무특성에 관한 연구)

  • Myong, Kwang-Jae;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.451-458
    • /
    • 2009
  • This experimental study was conducted to investigate macroscopic characteristics of the flash boiling spray with tow component mixing fuel. Homogeneous Charge Compression Ignition (HCCI) is a newer combustion method for internal combustion engines to reduce nitrogen oxide and particulate matter simultaneously. But it is difficult to put this combustion method to practical use in an engine because of such problems as instability of combustion in low load operating conditions and knocking in high load operating conditions. In HCCI, combustion characteristics and exhaust emissions depend on conditions of air/fuel mixture and chemical reactions of fuel molecules. The fuel design approach is achieved by mixing two components which differ in properties such as density, viscosity, volatility, ignitability and so on. We plan to apply the fuel design approach to HCCI combustion generated in a real engine, and examine the possibility of mixture formation control using the flash boiling spray. Spray characteristics of two component fuel with a flash boiling phenomenon was investigated using Shlieren and Mie scattering photography. Test fuel was injected into a constant volume vessel at ambient conditions imitated injection timing BTDC of a real engine. As a result, it was found that a flash boiling phenomenon greatly changed spray structure, especially in the conditions of lower temperature and density. Therefore, availability of mixture formation control using flash boiling spray was suggested.