DOI QR코드

DOI QR Code

Combustion Stability Rating Test of Liquid Rocket Engine Thrust Chamber

액체로켓엔진 연소기 연소안정성 평가시험

  • Ahn, Kyubok (School of Mechanical Engineering, Chungbuk National University) ;
  • Kim, Jong-Gyu (Combustion Chamber Department, Korea Aerospace Research Institute) ;
  • Choi, Hwan-Seok (Combustion Chamber Department, Korea Aerospace Research Institute)
  • Received : 2013.08.27
  • Accepted : 2014.03.11
  • Published : 2014.04.01

Abstract

As a evaluation method of combustion stability in a liquid rocket engine thrust chamber, external disturbance devices are used. In the paper, the study on pulse-gun ignition tests for a combustion stability rating test of a thrust chamber was performed. Charging volume of pulse-guns was determined by confirming the intensities of the pressure waves from the ignition tests in the cold-flow conditions. While using same injector head, combustion instabilities were not encountered during 14 hot-firing tests without pulse-guns but combustion instabilities were triggered by pulse-gun ignition during 2 hot-firing tests. The results showed that the pulse-gun ignition test could be the evaluation method and could reduce the hot-firing test number for the stability rating of a thrust chamber.

액체로켓엔진 연소기의 연소안정성을 평가하기 위한 방법으로 연소 시 외부 교란을 공급하여 안정성 특성을 확인하는 방법이 사용된다. 본 논문에서는 연소기의 연소안정성 평가시험을 위한 펄스건 기폭시험에 대한 연구를 수행하였다. 비연소조건에서 펄스건 기폭시험을 수행하여 압력파의 강도를 확인함으로써 펄스건의 장약량을 결정하였다. 동일한 연소기 헤드에서 펄스건이 적용되지 않은 14번의 연소시험 동안 연소불안정이 나타나지 않았지만, 펄스건이 적용된 두 번의 탈설계점 조건에서는 연소불안정 현상이 발생하였다. 이로부터 펄스건을 이용한 기폭시험이 연소안정성 평가의 방법이 될 수 있음을 확인하였으며, 연소안정성 판정을 위한 연소시험 횟수를 줄일 수 있는 방법임을 제시하였다.

Keywords

References

  1. Yang, V. and Anderson, W.E. (eds.), Liquid Rocket Engine Combustion Instability, Vol. 169, Progress in Aeronautics and Astronautics, AIAA, Washington, D.C., U.S.A., 1995.
  2. Lieuwen, T.C. and Yang, V. (eds.), Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling, Vol. 210, Progress in Aeronautics and Astronautics, AIAA, Virginia, U.S.A., 2005.
  3. Huzel, D.K. and Huang, D.H. (eds.), Modern Engineering for Design of Liquid-Propellant Rocket Engines, Vol. 147, Progress in Aeronautics and Astronautics, AIAA, Washington, D.C., U.S.A., 1992.
  4. Dranovsky, M.L., Combustion Instabilities in Liquid Rocket Engines: Testing and Development Practices in Russia, Vol. 221, Progress in Astronautics and Aeronautics, AIAA, Virginia, U.S.A., 2007.
  5. Combs, L.P., Oberg, C.L., Coultas, T.A. and Evers, W.H., "Liquid Rocket Engine Combustion Stabilization Devices," NASA SP-8113, 1974.
  6. Han, Y.M., Kim, J.G., Lee, K.J., Lim, B., Ahn, K., Kim, M., Seo, S. and Choi, H.S., "Low Pressure Test Results of Regenerative Cooling Combustion Chamber for 30 tonf-Class Liquid Rocket Engine," Proceedings of the 2009 KSPE Spring Conference, pp. 71-74, 2009.
  7. Han, Y.M., Seo, S., Lee, K.J., Kim, J.G., Lim, B., Ahn, K. and Choi, H.S., "Combustion Test of Regenerative Cooling Combustion Chamber with LOx Lead Supply for 30 ton-Class Liquid Rocket Engine," Proceedings of the 2009 KSAS Spring Conference, pp. 680-683, 2009.
  8. Ahn, K., Lim, B., Lee, K.J., Han, Y.M. and Choi, H.S., "Combustion Stability Analysis on Hot-firing Test Results of Regenerative Cooling Combustion Chamber," Journal of the Korean Society of Propulsion Engineers, Vol. 13, No. 5, pp. 15-20, 2009.
  9. Fisher, S.C. and Rahman, S.A., Remember the Giants: Apollo Rocket Propulsion Development, NASA, Washington, D.C., U.S.A., 2009.
  10. Reardon, F.H., "Combustion Stability Specifications and Verification Procedures for Liquid Propellant Rocket Engines," CPIA Publication 247, 1973.
  11. Kim, J., Ahn, K., Joh, M. and Choi, H.S., "Concept Design of Combustion Chamber for 7 tonf-class Liquid Rocket Engine," Proceedings of the 2012 KSPE Spring Conference, pp. 454-456, 2012.
  12. Lee, K.J., A Study on the High Frequency Combustion Stability of LOx/Kerosene Liquid Rocket Engine Thrust Chamber, Doctoral Thesis, Chungnam National University, Daejeon, Korea, 2010.