• Title/Summary/Keyword: combustion characteristic

Search Result 461, Processing Time 0.023 seconds

Study for combustion characteristic according to the O/F ratio of low thrust rocket engine using green propellant (친환경 추진제를 사용하는 저추력 엑체로켓엔진의 혼합비에 따른 연소 특성)

  • Jeon, Jun-Su;Kim, Young-Mun;Hwang, O-Sik;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.134-137
    • /
    • 2009
  • Combustion tests of a low thrust rocket engine was performed to get combustion characteristics, which used a high concentrated hydrogen peroxide and kerosene as the oxidizer and fuel. The engine consisted of multi injector(six coaxial swirl injectors), chamber, nozzle and catalyst ignition system. The test was carried out by changing O/F ratio from 3.8 to 11.0. The experimental results showed that combustion efficiency was highest at O/F ratio from 5 to 6 and pressure fluctuations of all the range were lower than 5%.

  • PDF

A Study on the Formation Mechanism of the Fly Ash from Coal Particles in the Coal Burning Boiler (석탄연소 보일러에서 생성된 석탄회의 분석과 형성 메커니즘 해석에 대한 연구)

  • Lee, Jung Eun;Lee, Jae Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1691-1701
    • /
    • 1998
  • Fly ash produced in coal combustion is a fine-grained material consisting mostly of spherical, glassy, and porous particles. A study on the formation mechanism of the fly ash from coal particles in the pulverized coal power plant is investigated with a physical, morphological, and chemical characteristic analysis of fly ash collected from the Samchonpo power plant. This study may contribute to the data base of domestic fly ash, the improvement of combustion efficiency, fouling phenomena and ash collection in the electrostatic precipitator. The physical property of fly ash is determined using a particle counter for the measurement of ash size distribution. Morphological characteristic of fly ash is performed using a scanning electron micrograph. The chemical components of fly ash are determined using an inductively coupled plasma emission spectrometry(ICP). The distribution of fly ash size was bi-modal and ranged from 12 to $19{\mu}m$ in mass median diameter. Exposure conditions of flue gas temperature and duration within the combustion zone of the boiler played an important role on the morphological properties of the fly ash such as shape, particle size and chemical components. The evolution of ash formation during pulverized coal combustion has revealed three major mechanisms by large particle formation due to break-up process, gas to particle conversion and growth by coagulation and agglomeration.

Experimental Study on the Radiation Efficiency and Combustion Characteristics with Respective to the Mat Thickness and the Fuel Kinds in Metal-Fiber Burner (메탈화이버 버너에서 매트 두께와 연료 종류에 따른 복사 효율 및 연소 특성에 관한 실험적 연구)

  • KIM, JAE HYEON;LEE, KEE MAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.512-522
    • /
    • 2018
  • This study was conducted to investigate on the combustion characteristic with the effects of mat thickness and fuel kinds in a metal-fiber burner. The mode transition point is confirmed by the K value, which was defined as the rate of flow velocity and laminar burning velocity. The ($T^4_{sur}-T^4_{\infty}$) is highest at methane flame with 3 T thickness. Through the measurement of the unburned mixture temperature, the possibility of submerged flame in surface combustion burner was confirmed. The rapid emission of CO occurs nearby limit blow out (LBO) because of the increase of flow velocity. In case of NOx, the trend is similar with surface temperature. However, it also considered that the NOx emission is affected by residence time with flame position.

Synthesis of Nanoprous $TiO_2$ Materials for Dye-sensitized Solar Cells Application Using Sol-gel Combustion Method (졸겔 연소법을 이용한 염료감응 태양전지용 나노 다공질 구조 $TiO_2$ 제작)

  • Han, Chi-Hwan;Sung, Youl-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.327-331
    • /
    • 2009
  • Nano-porous $TiO_2$ powder was fabricated using Acetylene black, applied photo voltaic device based on the Dye-sensitized Solar Cells (DSCs) was investigated experimentally. $TiO_2$-powder was fabricated using Ti-isopropoxide and 2-propanol by sol-gel combustion method. For cases of variable Acetylene black, characteristic of porosity, size of particle and crystallite of obtained $TiO_2$ nano-powder was investigated. The photovoltaic efficiency of the prepared DSCs was measured using $TiO_2$ film which prepared on each different heat treatment temperature($400^{\circ}C{\sim}700^{\circ}C$) with paste of $TiO_2$ powder. The porosity and size of particle of $TiO_2$ powder made with Acetylene black 0.4g was influenced significantly effect to DSCs characteristic. Heat treatment at $500^{\circ}C$ makes the better photovoltaic efficiency which 5.02%($J_{sc}=11.79mA/cm^2$, $V_{oc}=0.73V$, ff=0.58). The sol-gel combustion method was useful to DSCs fabrication.

Synthesis of Nanoporous $TiO_2$ Materials Using Sol-gel Combustion Method and Its Photovoltaic Characteristics (나노 다공질 구조의 이산화티타늄 박막 제작과 광전변환 특성 고찰)

  • Heo, Jong-Hyun;Sung, Youl-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.322-326
    • /
    • 2009
  • In this work, nanoporous $TiO_2$ powder was fabricated using Ketjen black, and applied in photovoltaic device based on the Dye-sensitized Solar Cells (DSCs). $TiO_2$ powder was fabricated using Ti-isopropoxide and 2-propanol by sol-gel combustion method. For added $0{\sim}2g$ variable of Ketjen black, characteristic of porosity, size of particle and crystallite of obtained $TiO_2$ nano powder was investigated. The photovoltaic efficiency of the prepared DSCs was measured using $TiO_2$ film which prepared on each different heat treatment temperature($100^{\circ}C{\sim}600^{\circ}C$) with paste of $TiO_2$ powder. The porosity and size in particle of $TiO_2$ powder made with Ketjen black Ig was influenced significantly effect to DSCs characteristic. Heat treatment at $500^{\circ}C$ makes the better photovoltaic efficiency which around 6.11%($J_{sc}=13.35mA/cm^2$, $V_{oc}=0.73V$, ff=0.63). The sol-gel combustion method was useful to DSCs fabrication.

Analysis of Unstable Shock-Induced Combustion over Wedges and Conical Bodies (쐐기 및 원추 주위의 불안정한 충격파 유도연소 해석)

  • Jeong-Yeol Choi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.32-33
    • /
    • 2003
  • Mechanism of a periodic oscillation of shock-induced combustion over a two- dimensional wedges and axi-symmetric cones were investigated through a series of numerical simulations at off-attaching condition of oblique detonation waves(ODW). A same computational domain over 40 degree half-angle was considered for two-dimensional and axi-symmetric shock-induced combustion phenomena. For two-dimensional shock-induced combustion, a 2H2+02+17N2 mixture was considered at Mach number was 5.85with initial temperature 292 K and initial pressureof 12 KPa. The Rankine-Hugoniot relation has solution of attached waves at this condition. For axi-symmetric shock-induced combustion, a H2+2O2+2Ar mixture was considered at Mach number was 5.0 with initial temperature 288 K and initial pressure of 200 mmHg. The flow conditions were based on the conditions of similar experiments and numerical studies.[1, 3]Numerical simulation was carried out with a compressible fluid dynamics code with a detailed hydrogen-oxygen combustion mechanism.[4, 5] A series of calculations were carried out by changing the fluid dynamic time scale. The length wedge is varied as a simplest way of changing the fluid dynamic time scale. Result reveals that there is a chemical kinetic limit of the detached overdriven detonation wave, in addition to the theoretical limit predicted by Rankine-Hugoniot theory with equilibrium chemistry. At the off-attaching condition of ODW the shock and reaction waves still attach at a wedge as a periodically oscillating oblique shock-induced combustion, if the Rankine-Hugoniot limit of detachment isbut the chemical kinetic limit is not.Mechanism of the periodic oscillation is considered as interactions between shock and reaction waves coupled with chemical kinetic effects. There were various regimes of the periodicmotion depending on the fluid dynamic time scales. The difference between the two-dimensional and axi-symmetric simulations were distinct because the flow path is parallel and uniform behind the oblique shock waves, but is not behind the conical shock waves. The shock-induced combustion behind the conical shockwaves showed much more violent and irregular characteristics.From the investigation of characteristic chemical time, condition of the periodic instability is identified as follows; at the detaching condition of Rankine-Hugoniot theory, (1) flow residence time is smaller than the chemical characteristic time, behind the detached shock wave with heat addition, (2) flow residence time should be greater than the chemical characteristic time, behind an oblique shock wave without heat addition.

  • PDF

A Study on Combustion Characteristic of Sponge Type Sound-absorbing Materials (스펀지형 흡음재의 연소특성에 관한 연구)

  • Song, Jae-Yong;Sa, Seung-Hun;Nam, Jung-Woo;Kim, Jin-Pyo;Park, Jong-Taek;Lee, Doo-Hyung
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.20-27
    • /
    • 2011
  • This paper studied combustion characteristics of the sponge type sound-absorbing materials extensively used on building interior. To estimate of the combustion characteristics, we carried out combustion experiment of general type and incombustibility type sound-absorbing materials. And then to evaluate the suitability of the sponge type sound-absorbing materials, we measured heat release rate (HRR) and smoke density (Ds) of the sound-absorbing materials using by a cone-calorimeter. From the combustion experimental results, general type sound-absorbing materials were rapid burned simultaneously with ignition and the incombustibility type sound-absorbing materials had all gone out simultaneously with ignition. Measured results of HRR and Ds were not satisfied KS F ISO 5660-1 and IMO FTP Code, form the results, the sponge type sound-absorbing materials were ill-suited for using building interior.

Study on Spray and Exhaust Emission Characteristics of DME-Biodiesel Blended Fuel in Compression Ignition Engine (압축착화기관에서 DME-바이오디젤 혼합연료의 분무 및 배기 특성에 관한 연구)

  • Cha, June-Pyo;Park, Su-Han;Lee, Chang-Sik;Park, Sung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.67-73
    • /
    • 2011
  • The purpose of this study is to investigate experimentally the spray-atomization and combustion-emission characteristics of biodiesel-DME blended fuel. In this study, two types of test fuels pure biodiesel (BD100) and blended fuel (B-DME20) were used, and the spray and combustion characteristics of different fuel compositions were analyzed. DME constitutes 20% and biodiesel constitutes 80% (by mass fraction) of the blended fuel. The overall spray characteristics, spray tip penetration, and cone angle were evaluated using frozen spray images. In addition, the combustion and emission characteristics were analyzed on the basis of the evaluated data for a single-cylinder CI engine with common-rail injection system. It was revealed that the injection profiles of both the test fuels for a given injection pressure showed similar trends. However, the injection profiles of the blended fuel (B-DME20) indicated shorter ignition delay than those of biodiesel.

Experimental Investigation on Combustion Characteristics of Liquid Kerosene and Gelled Kerosene Using Shear Coaxial Injector (전단동축인젝터를 이용한 액상 케로신 및 젤 케로신의 연소특성에 대한 실험적 연구)

  • Han, Seongjoo;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.1-11
    • /
    • 2020
  • In this study, a hot-firing test of a lab-scale gel rocket motor using liquid kerosene and gelled kerosene as fuel was performed in order to analyze the discrepancy of the static and dynamic pressure between the two fuels. The static pressure, characteristic velocity, and characteristic velocity efficiency of the liquid kerosene and gelled kerosene did not show any significant difference. However, in the case of dynamic pressure characteristics, the pressure oscillation amplitude in a specific high frequency region of the gelled kerosene demonstrated a significantly higher amplitude than liquid kerosene case. This is considered to be the effect of an intrinsic combustion mechanism of the gel propellant, and it can be postulated that this may act as a dominant factor influencing the high frequency combustion instability of the gel rocket motor.

A Study on the Combustion Characteristic and Soot Distribution of a Common Rail Type D.I.Diesel Visualized Engine with Pilot Injection (커먼레일식 직분식 가시화 디젤엔진의 파일럿 분사 연소 및 Soot 분포 특성에 관한 연구)

  • Han, Yong-Taek;Lee, Jae-Yong;Lee, Ki-Hyung
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.3
    • /
    • pp.31-37
    • /
    • 2003
  • The objective of this work is to investigate the effect of swirl, injection pressure and pilot injection on D.I.Diesel combustion by using a transparent engine system. The test engine is equipped with common rail injection system to obtain high pressure and to control injection timing and duration. In this study, the combustion analysis and steady flow test were conducted to estimate the heat release rate from in-cylinder pressure and pilot injection was investigated by using LII technique. As the results, high injection pressure was found to shorten ignition delay as well as enhance peak pressure and heat release rate was greatly affected by injection timing and pilot injection. In addition, the results showed that the period of soot formation corresponded to the diffusion flame.

  • PDF