DOI QR코드

DOI QR Code

Experimental Investigation on Combustion Characteristics of Liquid Kerosene and Gelled Kerosene Using Shear Coaxial Injector

전단동축인젝터를 이용한 액상 케로신 및 젤 케로신의 연소특성에 대한 실험적 연구

  • Han, Seongjoo (Center for Reliability Engineering in Mechanical and Aerospace Industry, Korea Aerospace University) ;
  • Moon, Heejang (School of Mechanical and Aerospace Engineering, Korea Aerospace University)
  • Received : 2020.03.01
  • Accepted : 2020.04.19
  • Published : 2020.06.30

Abstract

In this study, a hot-firing test of a lab-scale gel rocket motor using liquid kerosene and gelled kerosene as fuel was performed in order to analyze the discrepancy of the static and dynamic pressure between the two fuels. The static pressure, characteristic velocity, and characteristic velocity efficiency of the liquid kerosene and gelled kerosene did not show any significant difference. However, in the case of dynamic pressure characteristics, the pressure oscillation amplitude in a specific high frequency region of the gelled kerosene demonstrated a significantly higher amplitude than liquid kerosene case. This is considered to be the effect of an intrinsic combustion mechanism of the gel propellant, and it can be postulated that this may act as a dominant factor influencing the high frequency combustion instability of the gel rocket motor.

본 연구에서는 lab-scale 젤로켓모터를 이용하여 액상 케로신 연료와 이를 젤화 시킨 젤 케로신 연료의 연소시험을 수행함으로써, 각 연료별 연소실 정압특성 및 동압특성에 대해 분석하였다. 액상 케로신과 젤 케로신의 정압, 특성속도 및 특성속도 효율은 예상외로 큰 차이를 보이지 않음을 확인하였다. 그러나 액상 케로신과 젤 케로신의 동압 특성을 비교한 결과, 특정 고주파수 영역에서 젤 케로신의 압력 진폭이 액상 케로신 대비 증가하는 것을 확인하였다. 이는 젤 추진제의 고유 연소 메커니즘에 기인한 특성으로 여겨지며, 이들 압력 섭동 진폭이 추후 젤로켓모터의 고주파 연소불안정에 영향을 미치는 주요 인자로 적용될 가능성이 클 것으로 판단되었다.

Keywords

Acknowledgement

본 논문은 미래창조과학부의 지원(NRF-2017M1A3A3A02016561) 및 서울대학교 차세대 우주 추진 연구센터와 연계된 미래창조과학부의 재원으로 한국연구재단의 지원을 받아 수행한 선도 연구센터지원사업(과제번호: NRF-2013R1A5A1073861)을 받아 수행된 연구로서 지원에 감사드립니다.

References

  1. Natan, B. and Rahimi, S., "The Status of Gel Propellants in Year 2000," International Journal of Energetic Materials and Chemical Propulsion, Vol. 5, pp. 1-6, 2002.
  2. Ciezki, H., Robers, A. and Schneider, G., "Investigation of the Spray Behavior of Gelled Jet-A1 Fuels Using an Air Blast and an Impinging Jet Atomizer," 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, I.N., U.S.A., AIAA 2002-3601, Jul. 2002.
  3. Ciezki, H.K., Hurttlen, J., Naumann, K.W., Negri, M., Ramsel, J. and Weiser, V., "Overview of the German Gel Propulsion Technology Program," 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, O.H., U.S.A., AIAA 2014-3794, Jul. 2014.
  4. Ciezki, H.K. and Natan, B., "An Overview of Investigations on Gel Fuels for Ramjet Applications," 17th International in Symposium on Airbreathing Engines, Munich, Germany, Sep. 2005.
  5. He, B., Nie, W. and He, H., "Unsteady Combustion Model of Nonmetalized Organic Gel Fuel Droplet," Energy & Fuels, Vol. 26, No. 11, pp. 6627-663, 2012. https://doi.org/10.1021/ef300990d
  6. Kunin, A., Natan, B. and Greenberg, J., "Theoretical Model of the Transient Combustion of Organic-Gellant-Based Gel Fuel Droplets," Journal of Propulsion and Power, Vol. 26, No. 4, pp. 765-771, 2010. https://doi.org/10.2514/1.41705
  7. Mishra, D., Patyal, A. and Padhwal, M., "Effects of Gellant Concentration on the Burning and Flame Structure of Organic Gel Propellant Droplets," Fuel, Vol. 90, No. 5, pp. 1805-1810, 2011. https://doi.org/10.1016/j.fuel.2010.12.021
  8. Solomon, Y., DeFini, S., Pourpoint, T. and Anderson, W., "Gelled Monomethyl Hydrazine Hypergolic Droplet Investigation," Journal of Propulsion and Power, Vol. 29, No. 1, pp. 79-86, 2013. https://doi.org/10.2514/1.B34634
  9. Solomon, Y., and Natan, B., "Experimental Investigation of the Combustion of Organic-Gellant-Based Gel Fuel Droplets," Combustion Science and Technology, Vol. 178, No. 6, pp. 1185-1199, 2006. https://doi.org/10.1080/00102200600620259
  10. Herschel, W. and Bulkley, R., "Konsistenzmessungen von Gummi-Benzollosungen," Colloid & Polymer Science, Vol. 39, No. 4, pp. 291-300, 1926.
  11. Kim, J.W., Jun, D.S., Kang, T.G., Jang, S.P., Koo, J.Y. and Moon, H.J., "Rheological Characteristics of Kerosene Gel Fuel with SiO2 Gellant Derivatives," Journal of the Korean Society of Propulsion Engineers, Vol. 16, No. 6, pp. 23-31, 2012. https://doi.org/10.6108/KSPE.2012.16.6.023
  12. Jang, J.W., "A Study on the Basic Properties and Combustion Characteristics of Kerosene Gel Propellant Using Shear Coaxial Injector," Master Dissertation, Department of Mechanical and Aerospace Engineering, Korea Aerospace University, Goyang, Korea, 2019.
  13. Han, S.J., "Combustion Stability Study of Gelled Rocket Fuel Based on Combustion Time Lag Model," Ph.D. Dissertation, Department of Mechanical and Aerospace Engineering, Korea Aerospace University, Goyang, Korea, 2020.
  14. Huang, D.H. and Huzel, D.K., Modern Engineering for Design of Liquid-Propellant Rocket Engines, American Institute of Aeronautics and Astronautics, U.S.A., 1992.
  15. Green, J., Rapp, D. and Roncace, J. "Flow Visualization of a Rocket Injector Spray Using Gelled Propellant Simulants," 27th Joint Propulsion Conference, Sacramento, C.A., U.S.A., AIAA 1991-2198, Jun. 1991.
  16. Mallory, J.A., "Jet Impingement and Primary Atomization of Non-Newtonian Liquids," Ph.D. Dissertation, Department of Mechanical and Aerospace Engineering, Purdue University, West Lafayette, I.N., U.S.A., 2012.
  17. Crocco, L., "Measurements of the Combustion Time Lag in a Liquid Bipropellant Rocket Motor," Journal of Jet Propulsion, Vol. 26, No. 1, pp. 20-25, 1956. https://doi.org/10.2514/8.6907
  18. Crocco, L., "Theory of Liquid Propeliant Rocket Combustion Instability and Its Experimental Verification," ARS Journal, Vol. 30, No. 2, pp. 159-168, 1960. https://doi.org/10.2514/8.5020
  19. Crocco, L., "Theoretical Studies on Liquid-Propellant Rocket Instability," 10th Symposium (International) on Combustion, Cambridge, U.K., Aug. 1964.
  20. Delplanque, J. and Sirignano, W., "Transcritical Liquid Oxygen Droplet Vaporization: Effect on Rocket Combustion Instability," Journal of Propulsion and Power, Vol. 12, No. 2, pp. 349-357, 1996. https://doi.org/10.2514/3.24035