• Title/Summary/Keyword: combustible waste

Search Result 97, Processing Time 0.024 seconds

A Study on the Characteristics of Waste Fuel Manufactured from Industrial Combustible Waste Generated in Youngnam Area (영남권(嶺南圈) 산업단지(産業團地) 발생폐기물(發生廢棄物)을 이용한 고형연료(固形燃料) 제조 특성에 관한 연구)

  • Kang, Min-Su;Kim, Yang-Do;Ryu, Young-Bok;Lee, Gang-Woo;Lee, Man-Sig
    • Resources Recycling
    • /
    • v.18 no.6
    • /
    • pp.54-59
    • /
    • 2009
  • The level manufacturing technique for refuse derived fuel (RDF) is possible to produce them itself by a domestic process which is appropriate in Korea. However, very few facilities were used for industrial combustible waste. The objective of this research is to develop the technique for refuse plastic fuel (RPF) of industrial waste. RPFs were prepared by mixing of plastic, paper and wood based on amount of regional waste. The physical properties of the RPFs prepared were investigated. RPFs prepared at mixing ratio(plastic : paper : wood) of 87.55% : 8.15% : 4.3% show the highest lower heating values in wet-base (LHVW) and the LHVW decreases as the mixing ratio of paper and wood increases.

Experimental study on the combustion characteristics of titanium alloy (티타늄 합금 폐기물의 연소 특성에 관한 실험적 연구)

  • Lee, Jun-Sik;Nam, Ki-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.105-110
    • /
    • 2019
  • Most titanium alloy waste with cutting oil was discarded without recycling process so that it can be caused by metal and oil fires. However, there is no fire management system and studies on the titanium or titanium alloy waste in spite of high fire risk. The purpose of this experimental study is to identify the fire risk of the titanium alloy waste with cutting oil. We collected the 120g waste which was made in the biomedical titanium alloy cutting process. The waste was burned and conducted thermal image analysis with infrared camera. The experimental results which illustrated the process, characteristics, and trends of fire are presented. Firstly, the cutting oil was burned and partially the titanium alloy waste was burned. The maximum temperature of the fire was more than $650^{\circ}C$ in some specific spots. These results means when a lot of titanium alloy waste with cutting oil was ignited, this fire could connect the titanium fire. In other words, the fire has a flammable liquid fire and combustible metal fire at the same time. The experimental study could be used fire prevention, response, and investigation of the titanium alloy waste.

Shielding Analysis for Industrial Package: Focusing on Dry Active Waste (IP형 운반용기 차폐해석-잡고체폐기물을 중심으로)

  • Lee Kang-Wook;Cho Chun-Hyung;Jang Hyun-Kie;Choi Byung-Il;Lee Heung-Young
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.523-530
    • /
    • 2005
  • In this study, maximum exposure rate at DAW(Dry Active Waste) drum surface which is satisfying regulation limit was calculated for conceptual design of IP(Industrial Package). DAW can be classified as combustible and non-combustible waste and the calculation was conducted for single and mixed radionuclide for each type of waste. In case of combustible waste that mixed radionuclide is uniformly distributed, the maximum exposure rates at drum surface were 3.60E-01, 8.85E-01 and 1.27E+01 mSv/hr for IP Type 1, 2-a and 2-b, respectively. and 3.60E-01, 8.85E-01, 1.27E+01 mSv/hr for single radionuclide(Co-60). In case of non-combustible waste that mixed radionuclide is uniformly distributed, the maximum exposure rates at drum surface were 7.14E-01, 1.83E+00, 2.69E+01 mSv/hr for IP Type 1, 2-a and 2-b, respectively. and 7.13E-01, 1.81E-01, 2.62E+01 mSv/hr for single radionuclide(Co-60). Through this study, the maximum amount of DAW can be transported by IP was suggested as maximum exposure rate at drum surface and the calculation for the other types of waste will be conducted.

  • PDF

Analytical method for combustible waste contaminated by the HF leakage from industrial process (산업공정에서 불산누출로 오염된 가연성 폐기물의 분석방법 연구)

  • Kang, Young-Yeul;Kim, Yong-Jun;Kim, Woo-Il;Yoon, Cheol-Woo;Yeon, Jin-Mo;Shin, Sun-Kyoung;Oh, Gil-Jong
    • Analytical Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.167-171
    • /
    • 2014
  • Hydrofluoric acid (HF), a typical inorganic acid, has been used in the industry for its various usage and classified as the toxic compound, because it can cause the pneumonia and pulmonary edema when it was exposed to respiratory organs. The official environmental analytical method for fluorine and its compound in waste has not been developed. For this reason, we have faced some problem to treat the contaminated wastes by the HF leakage from industrial process. In this study, prepared for analytical method for combustible waste (crop, trees, etc.) generated from HF leaking accident and to be applied as the official analytical method for fluorine contaminated waste when the fluorine and its compound will be regulated as a hazardous material by the waste management law later.

Combustible gas production from waste tire pyrolysis process by thermal plasma (열플라즈마에 의한 폐타이어의 열분해 공정에서 가연성 가스 생성)

  • Choi, Kyung-Soo;Park, Dong-Wha
    • Clean Technology
    • /
    • v.5 no.1
    • /
    • pp.42-48
    • /
    • 1999
  • Waste tires have both sides which are contamination and reuse concern with environmental problems. In this study, tire pyrolysis was conducted to convert combustible gases using thermal plasma. Production of combustible gases was found by gas chromatography after thermal plasma pyrolysis of waste tires without oxygen. The combustible gases consist of low molecular hydrocarbons such as $CH_4$, $C_2H_2$, $C_4H_{10}$ etc. As tire feed rate increased, the composition of $CH_4$ in the gases was increased. As plasma power increased, the composition of $C_2H_2$ was increased. $C_2H_2$ and $C_4H_{10}$ were dominant and had the ratio over 70% in the gases. On the other hand the trends of pyrolysis was characterized in the thermal plasma from the results of TG analysis which shows the currents of decomposition of the char according to the temperature.

  • PDF

Realization of Zero Waste Clean City to Low Carbon Green Growth (저탄소 녹색 성장을 위한 폐기물 제로 청정도시 구상)

  • Oh, Jeong-Ik;Ahn, Soo-Jeung;Kim, Jong-Yeob
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.131-140
    • /
    • 2010
  • Zero waste clean city was visualized by designing the environmental fundamental facilities such as automated waste collection and bio-energizing system of domestic waste, which was categorized into food and combustible waste from urban area. The biomass circulation position was applied to the domestic waste collection position combined with bio-energizing system in the zero waste clean city. Bio-energizing system consisted of bio-gasification, bio-fuel and bioenergy-circulation process. Food wastes were treated by bio-gasification with anaerobic digestion, and combustible wastes were made of bio-fuel with pyrolysis/drying. Biogas and bio-fuel was utilized into the electric generation or boiler heat in bioenergy-circulation process. The emission of carbon dioxide(CO2) and construction fee of the environmental fundamental facilities related with domestic waste was estimated in the existing city and zero waste clean city, assuming the amount of food waste 35 ton/day, combustible waste 20 ton/day from domestic area. Consequently, 2.7 times lower carbon dioxide emission and 15% construction fee of the environmental fundamental facilities related with domestic waste were obtained from the zero waste clean city by comparing with existing city.

A Study on the Treatment of Combustible Wastes and the Resource Recovery by Pyrolysis (熱分解에 의한 可燃性 廢棄物의 처리 및 資源回收에 관한 연구)

  • Kim, Sam-Cwan;Zong, Moon-Shik
    • Journal of Environmental Health Sciences
    • /
    • v.13 no.1
    • /
    • pp.17-33
    • /
    • 1987
  • As a result of technical advances and industrialization, the characteristics of domestic and industrial wastes are becoming more complex. Accordingly, improved treatment and disposal systems are being continuously sought to take account of complex characteristics and to comply with economic restrictions. In this study, an application of pyrolysis to the treatment of industrial wastes, including waste scrap rubber, waste raw material used in making the slipper bottom and waste PVC pipe, and the effectiveness of pyrolysis in resource recovery from these wastes were investigated. Batches of wastes were pyrolysed by external heating to a temperature of 400-800$\circ$C in a 32 mm diameter x 0.9 m long silica tube to produce combustible gases, oils and chars. Before the start of pyrolysis runs, the entire system was purged with nitrogen gas to exclude the air. The temperature inside the retort was controlled by the thermocouple in the gas stream, and referred to as the pyrolysis temperature. Under these conditions three products were separately collected and further analyzed. The results were summarized as follows. 1. More gases and less chars were produced with higher pyrolyzing temperature and with higher rates of heating, but the yields of oils tended downwards at temperatures above 700$\circ$C. Accordingly, operating conditions of pyrolysis should be varied with desired material. 2. Calorific values and sulfur contents of produced oils were sufficient and suitable for fuel use. Chars from waste rubber had high heating values with low sulfur contents, but calorific values of chars from waste PVC and waste slipper were as low as 3, 065-4, 273 kcal/kg and 942-2, 545 kcal/kg, respectively. Therefore, char from these wastes are inappropriate for fuel. 3. Soluble contents of Pb, Cd, Cu and Zn in chars from waste rubber and waste slipper were below the Specific Hazardous Waste Treatment Standards. However soluble contents of Pb and Cd in chars from waste PVC were one or two times and five or seven times exceedingly the Specific Hazardous Waste Treatment Standards, respectively. 4. Post high heating is desirable for treatment method of waste PVC which generates toxic hydrogen chloride. 5. The proportions of hydrogen, methane and ethane in produced gases were in the range of 3.99-35.61% V/V, 18.22-32.50% V/V and 5.17-5.87% V/V, respectively. 6. Pyrolysis is a useful disposal method in case of waste slipper, which was hardly combustible, and thus investigations of this kind of materials are required for effective management of industrial waste. 7. Based upon the possible market development for products, overall pyroly economics to take account of treatment values of noncombustible or hazardous materials should be evaluated.

  • PDF

A study on the physico-chemical characteristics of municipal solid wastes generated in the sunchon city (순천시 생활쓰레기의 계절별 조성 및 물리·화학적 특성에 관한 연구)

  • Hu, Kwan;Ko, Oh-Suk;Wang, Seung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.4
    • /
    • pp.105-110
    • /
    • 2001
  • To provide successful treatment policy and to apply sources for establishing plan, municipal solid wastes quantity was investigated as physical and chemical characteristics from Sunchon city. Results are like following after checking out characteristics by seasons, type. The average specific weight of municipal solid wastes is $219kg/m^3$ for combustible wastes, $391kg/m^3$ for non-combustible. Food wastes of combustible wastes contained moisture of 38.1% as standard of moisture weight per real weight, 49.6% moisture is contained in non-combustible wastes except food wastes moisture. Moisture, volatile and ash are contented by 16.9%, 68.1% and 15.0% in combustible wastes except food wastes. That means combustible wastes are available a refuse incineration. The low calorific value of only combustible waste is 2,962kca1/kg that is good for refuse incineration.

  • PDF

Study on Physico-chemical Characteristics and Combustion Kinetics Solid Waste (생활쓰레기의 이화학적 특성 및 연소 속도론적 연구)

  • Lee, Keon Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.1
    • /
    • pp.134-142
    • /
    • 2007
  • In this study the physico-chemical characteristics of solid waste and the thermagravimetric analysis of waste investigated. It was found that the combustible component, water and ash were 61%, 32%, 7% respectively. The amount of combustible component was much higher than those of others. It was shown that the total carbon and hydrogen of the waste 94% and the high heating value was 2897,883(Kcal/kg). The thermagravimetric analysis showed that the weight loss of wastes occurred as temperature increased, and the rate was higher in the temperature range of $300^{\circ}C$ to $500^{\circ}C$.

  • PDF

A Study the Physicochemical Characteristics of Municipal Solid Wastes

  • Kim, Young-Sik
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.4
    • /
    • pp.35-41
    • /
    • 2003
  • The objective of this study was investigate the generation rates, composition, proportion and calorific values each of material in the municipal solid wastes as well as the effect of incineration residual leachate on the environment in Yangsan sanitary landfill site. The results were as follows ; The annual average generation rate of municipal solid wastes in Yang-san is approximately 2.0 kg/cㆍd. The weight percent of combustible matters is on average 78∼87% and the lower heating values of municipal solid wastes is measured to be more than 2,151 kcal/kg after removing the briquette component. The food waste was major source of solid wastes in Yang-san city as 35% and its variation by seasons was negligible. Combustible part was larger than incombustible part of the domestic solid wastes in spring and summer. It is recommended that municipal solid wastes be treated by multiple methods such as the sanitary landfill, resources and recovery, composting and incineration.