• Title/Summary/Keyword: combined systems

Search Result 2,639, Processing Time 0.028 seconds

Response Characteristics Of Steel Frame Structuresw With Added Elastic Dampers (탄성 댐퍼가 추가된 대형철골 구조물의 응답특성)

  • Bae, Chun-Hee;Cho, Cheul-Whan;Yang, Kyeong-Hyeon;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.593-598
    • /
    • 2002
  • Coupling adjacent steel frame using elastic dampers for control of response to low and moderate dynamic event is investigated in this paper. The complex modal superposition method is first used to determine dynamic characteristic, mainly modal damping ratio and modal frequency, of damper linked linear adjacent steel frame for fractical use. Dynamic response of steel frame linked by hydraulic-excitation method. This combined method can efectively and accurately determine dynamic response of non-clasically damped systems in the frequency domain. Parametric studties are finally performed to identify optimal parameters of elastic dampers for achieving the maximum modal damping ratio or the maximum response reduction of steel frame. It is demonstrated that using discrete elasatic dampers of proper parameters to link steel frame can reduce dynamic response significantly.

  • PDF

Current Status and Applications of Adaptive Laboratory Evolution in Industrial Microorganisms

  • Lee, SuRin;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.793-803
    • /
    • 2020
  • Adaptive laboratory evolution (ALE) is an evolutionary engineering approach in artificial conditions that improves organisms through the imitation of natural evolution. Due to the development of multi-level omics technologies in recent decades, ALE can be performed for various purposes at the laboratory level. This review delineates the basics of the experimental design of ALE based on several ALE studies of industrial microbial strains and updates current strategies combined with progressed metabolic engineering, in silico modeling and automation to maximize the evolution efficiency. Moreover, the review sheds light on the applicability of ALE as a strain development approach that complies with non-recombinant preferences in various food industries. Overall, recent progress in the utilization of ALE for strain development leading to successful industrialization is discussed.

System Modeling and Simulation Study for the Analysis of Flow Lines (Flow Line 분석을 위한 시스템 모델링 및 시뮬레이션 연구 - 타이어 공장의 사상라인을 중심으로 -)

  • Choi, Byung-Kyu;Park, Jeong-Hyeon;Hwang, Moon-Ho;Kim, Jae-Hie
    • IE interfaces
    • /
    • v.4 no.1
    • /
    • pp.71-81
    • /
    • 1991
  • Presented in this paper is a systematic approach to "modeling and simulation' of flow lines in mass production systems, using a tire trimming line as an example. The "modeling phase" consists of 1) generation of alternative line configurations, 2) construction of a reference model for each alternative, and 3) formal description of the target system. ACD(Activity Cycle Diagrams) are employed as a tool for formal description. In the "simulation phase'. block diagram models (provided by the simulation language SIMAN) and the next event methodology(implemented in FORTRAN 77) are combined in order to fully describe the flow line behavior.

  • PDF

Capacity Firming for Wind Generation using One-Step Model Predictive Control and Battery Energy Storage System

  • Robles, Micro Daryl;Kim, Jung-Su;Song, Hwachang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.2043-2050
    • /
    • 2017
  • This paper presents two MPC (Model Predictive Control) based charging and discharging algorithms of BESS (Battery Energy Storage System) for capacity firming of wind generation. To deal with the intermittency of the output of wind generation, a single BESS is employed. The proposed algorithms not only make the output of combined systems of wind generation and BESS track the predefined reference, but also keep the SoC (State of Charge) of BESS within its physical limitation. Since the proposed algorithms are both presented in simple if-then statements which are the optimal solutions of related optimization problems, they are both easy to implement in a real-time system. Finally, simulations of the two strategies are done using a realistic wind farm library and a BESS model. The results on both simulations show that the proposed algorithms effectively achieve capacity firming while fulfilling all physical constraints.

Attribute Set Based Signature Secure in the Standard Model

  • Li, Baohong;Zhao, Yinliang;Zhao, Hongping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1516-1528
    • /
    • 2015
  • We introduce attribute set based signature (ASBS), a new cryptographic primitive which organizes user attributes into a recursive set based structure such that dynamic constraints can be imposed on how those attributes may be combined to satisfy a signing policy. Compared with attribute based signature (ABS), ASBS is more flexible and efficient in managing user attributes and specifying signing policies. We present a practical construction of ASBS and prove its security in the standard model under three subgroup decision related assumptions. Its efficiency is comparable to that of the most efficient ABS scheme.

Trust and Risk based Access Control and Access Control Constraints

  • Helil, Nurmamat;Kim, Mu-Cheol;Han, Sang-Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.2254-2271
    • /
    • 2011
  • Access control in dynamic environments needs the ability to provide more access opportunities of information to users, while also ensuring protection information from malicious users. Trust and risk are essential factors and can be combined together in access control decision-making to meet the above requirement. In this paper, we propose the combination of the trust and risk in access control to balance information accessibility and protection. Access control decision is made on the basis of trustworthiness of users and risk value of permissions. We use potential relations between users and relations between permissions in access control. Our approach not only provides more access opportunities for trustworthy users in accessing permissions, but also enforces traditional access control constraints such as Chinese Wall policy and Separation of Duty (SoD) of Role-Based Access Control (RBAC) model in an effective way.

Nonlinear analysis of reinforced concrete frame under lateral load

  • Salihovic, Amir;Ademovic, Naida
    • Coupled systems mechanics
    • /
    • v.7 no.3
    • /
    • pp.281-295
    • /
    • 2018
  • This study aims to investigate the capacity of different models to reproduce the nonlinear behavior of reinforced concrete framed structures. To accomplish this goal, a combined experimental and analytical research program was carried out on a large scaled reinforced concrete frame. Analyses were performed by SAP2000 and compared to experimental and VecTor2 results. Models made in SAP2000 differ in the simulation of the plasticity and the type of the frame elements used to discretize the frame structure. The results obtained allow a better understanding of the characteristics of all numerical models, helping the users to choose the best approach to perform nonlinear analysis.

Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory

  • Timesli, Abdelaziz
    • Advances in nano research
    • /
    • v.9 no.2
    • /
    • pp.69-82
    • /
    • 2020
  • In this paper, a new explicit analytical formula is derived for the critical buckling load of Double Walled Carbon Nanotubes (DWCNTs) embedded in Winkler elastic medium without taking into account the effects of the nonlocal parameter, which indicates the effects of the surrounding elastic matrix combined with the intertube Van der Waals (VdW) forces. Furthermore, we present a model which predicts that the critical axial buckling load embedded in Winkler, Pasternak or Kerr elastic medium under axial compression using the nonlocal Donnell shell theory, this model takes into account the effects of internal small length scale and the VdW interactions between the inner and outer nanotubes. The present model predicts that the critical axial buckling load of embedded DWCNTs is greater than that without medium under identical conditions and parameters. We can conclude that the embedded DWCNTs are less susceptible to axial buckling than those without medium.

Optimizing Caching in a Patch Streaming Multimedia-on-Demand System

  • Bulti, Dinkisa Aga;Raimond, Kumudha
    • Journal of Computing Science and Engineering
    • /
    • v.9 no.3
    • /
    • pp.134-141
    • /
    • 2015
  • In on-demand multimedia streaming systems, streaming techniques are usually combined with proxy caching to obtain better performance. The patch streaming technique has no start-up latency inherent to it, but requires extra bandwidth to deliver the media data in patch streams. This paper proposes a proxy caching technique which aims at reducing the bandwidth cost of the patch streaming technique. The proposed approach determines media prefixes with high patching cost and caches the appropriate media prefix at the proxy/local server. Herein the scheme is evaluated using a synthetically generated media access workload and its performance is compared with that of the popularity and prefix-aware interval caching scheme (the prefix part) and with that of patch streaming with no caching. The bandwidth saving, hit ratio and concurrent number of clients are used to compare the performance, and the proposed scheme is found to perform better for different caching capacities of the proxy server.

Hydroelastic vibration analysis of wetted thin-walled structures by coupled FE-BE-Procedure

  • Rohr, Udo;Moller, Peter
    • Structural Engineering and Mechanics
    • /
    • v.12 no.1
    • /
    • pp.101-118
    • /
    • 2001
  • The reliable prediction of elastic vibrations of wetted complex structures, as ships, tanks, offshore structures, propulsion components etc. represent a theoretical and numerical demanding task due to fluid-structure interaction. The paper presented is addressed to the vibration analysis by a combined FE-BE-procedure based on the added mass concept utilizing a direct boundary integral formulation of the potential fluid problem in interior and exterior domains. The discretization is realized by boundary element collocation method using conventional as well as infinite boundary element formulation with analytical integration scheme. Particular attention is devoted to modelling of interior problems with both several separate or communicating fluid domains as well as thin-walled structures wetted on both sides. To deal with this specific kind of interaction problems so-called "virtual" boundary elements in areas of cut outs are placed to satisfy the kinematical conditions in partial connected fluid domains existing in realistic tank systems. Numerical results of various theoretical and practical examples demonstrate the performance of the BE-methodology presented.