• 제목/요약/키워드: combined power and rate

검색결과 250건 처리시간 0.023초

석탄화력발전대비 LNG복합화력발전 환경성 및 경제성 비용분석에 관한 연구 (A Study on Environmental and Economic Cost Analysis of Coal Thermal Power Plant Comparing to LNG Combined Power Plant)

  • 김종원
    • 아태비즈니스연구
    • /
    • 제9권4호
    • /
    • pp.67-84
    • /
    • 2018
  • This study is about comparing coal thermal plant to LNG combined power plant in respect of environmental and economic cost analysis. In addition sensitive analysis of power cost and discount rate is conducted to compare the result of change in endogenous and exogenous variable. For environmental assessment, when they generate 10,669GWh yearly, coal thermal power plant emits sulfur oxides 959ton, nitrogen oxide 690ton, particulate matter 168ton and LNG combined power plant emits only nitrogen oxide 886ton respectively every year. Regarding economic cost analysis on both power plants during persisting period 30 years, coal thermal power plant is more cost effective 4,751 billion won than LNG combined taking in account the initial, operational, energy and environmental cost at 10,669GWh yearly in spite of only LNG combined power plant's energy cost higher than coal thermal. In case of sensitive analysis of power cost and discount rate, as 1% rise or drop in power cost, the total cost of coal thermal power plant increases or decreases 81 billion won and LNG combined 157 billion won up or down respectively. When discount rate 1% higher, the cost of coal thermal and LNG combined power plant decrease 498 billion won and 539 billion won for each. When discount rate 1% lower, the cost of both power plant increase 539 billion won and 837 billion won. With comparing each result of change in power cost and discount rate, as discount rate is weigher than power cost, which means most influential variable of power plan is discount rate one of exogenous variables not endogenous.

페이딩 채널에서 직접 대역확산 부호분할 다중접속 통신을 위한 일반화된 혼합 전력/전송률 적응화 기법 (Generalized Combined Power and Rate Adaptations in DS/CDMA Communications over Fading Channels)

  • 이예훈;김동호
    • 한국통신학회논문지
    • /
    • 제38A권8호
    • /
    • pp.680-687
    • /
    • 2013
  • 본 논문에서는 나카가미 페이딩 채널 환경에서 직접 대역확산 부호분할 다중접속 통신을 위한 일반화된 혼합 전력/전송률 적응화 기법에 관하여 연구한다. 각 사용자를 위한 전송전력은 $G^p_i$에 비례하여 할당되는데, 여기에서 $G_i$는 사용자 i의 채널 이득이고 p는 실수이다. 전송률(즉, 처리이득)도 원하는 전송품질을 얻기 위하여 동시에 결합되어 적응화 된다. 본 연구에서는 평균 전력 및 최대 전력이 고정되어 있을 때 제안하는 혼합 적응화 방식으로 얻을 수 있는 평균 데이터율을 분석하였다. 본 논문의 결과를 통해서 제안하는 혼합 전력/전송률 적응화 방식이 전력 혹은 전송률의 단일 적응화 방식에 비하여 많은 성능 향상이 있음을 알 수 있었다.

복합화력 성능감시 정량화 기법 (A Performance Monitoring Method for Combined Cycle Power Plants)

  • 주용진;김시문;서석빈;김미영;마삼선;홍진표
    • 한국유체기계학회 논문집
    • /
    • 제12권5호
    • /
    • pp.39-46
    • /
    • 2009
  • This paper outlines how the on-line performance monitoring system can be used to improve the efficiency and maintenance of the equipments. And a method of the heat rate allocation to each equipment was suggested to monitor the performance of combined cycle power plants. This calculates the expected heat rate of current conditions and compares it with actual values. Loss allocation in heat rate is reconciled by calculating the magnitude of the deficiency contributed by major components, such as the gas turbine, heat recovery steam generator, steam turbine and condenser. Expected power output is determined by a detailed model and correction curves of the plant. This simulation models are found to reproduce high accuracy in behavior of the cycle for various operating conditions, both in design and in off-design condition. Errors are lower than 2% in most cases.

Power Allocation in Heterogeneous Networks: Limited Spectrum-Sensing Ability and Combined Protection

  • Ma, Yuehuai;Xu, Youyun;Zhang, Dongmei
    • Journal of Communications and Networks
    • /
    • 제13권4호
    • /
    • pp.360-366
    • /
    • 2011
  • In this paper, we investigate the problem of power allocation in a heterogeneous network that is composed of a pair of cognitive users (CUs) and an infrastructure-based primary network. Since CUs have only limited effective spectrum-sensing ability and primary users (PUs) are not active all the time in all locations and licensed bands, we set up a new multi-area model to characterize the heterogeneous network. A novel combined interference-avoidance policy corresponding to different PU-appearance situations is introduced to protect the primary network from unacceptable disturbance and to increase the spectrum secondary-reuse efficiency. We use dual decomposition to transform the original power allocation problem into a two-layer optimization problem. We propose a low-complexity joint power-optimizing method to maximize the transmission rate between CUs, taking into account both the individual power-transmission constraints and the combined interference power constraint of the PUs. Numerical results show that for various values of the system parameters, the proposed joint optimization method with combined PU protection is significantly better than the opportunistic spectrum access mode and other heuristic approaches.

복합발전기 조합별 증분비 곡선 재설정에 관한 연구 (A Study on the Resetting of Incremental Heat Rate Curve of Combined Cycle Unit by Combination)

  • 홍상범;최준호
    • 전기학회논문지
    • /
    • 제68권1호
    • /
    • pp.8-12
    • /
    • 2019
  • Combined Cycle Unit(CC) generates the primary power from the Gas Turbine(GT) and supplies the remaining heat of the GT to the Steam Turbine(ST) to generate the secondary power from the ST. It plays a major role in terms of energy efficiency and Load Frequency Control(LFC). Incremental Heat Rate(IHR) curves of economic dispatch(ED) of CC is applied differently by GT/ST combination. But It is practically difficult because of performance test by all combinations. This paper suggests a reasonable method for estimating IHR curves for partial combinations(1:1~(N-1):1) using IHR curves when operating with GT alone(1:0) and with all(N:1) combinations of CC.

Syngas를 연료로 사용하는 발전용 가스터빈의 성능해석 (Performance Analysis of a Gas Turbine for Power Generation Using Syngas as a Fuel)

  • 이종준;차규상;손정락;주용진;김동섭
    • 대한기계학회논문집B
    • /
    • 제32권1호
    • /
    • pp.54-61
    • /
    • 2008
  • Integrated Gasification Combined Cycle (IGCC) power plant converts coal to syngas, which is mainly composed of hydrogen and carbon monoxide, by the gasification process and produces electric power by the gas and steam turbine combined cycle power plant. The purpose of this study is to investigate the influence of using syngas in a gas turbine, originally designed for natural gas fuel, on its performance. A commercial gas turbine is selected and variations of its performance characteristics due to adopting syngas is analyzed by simulating off-design gas turbine operation. Since the heating value of the syngas is lower, compared to natural gas, IGCC plants require much larger fuel flow rate. This increases the gas flow rate to the turbine and the pressure ratio, leading to far larger power output and higher thermal efficiency. Examination of using two different syngases reveals that the gas turbine performance varies much with the fuel composition.

배열 이용도를 고려한 가스터빈 발전시스템의 부분부하 성능 비교분석 (Comparative Part Load Performance Analysis of Gas Turbine Power Generation Systems Considering Exhaust Heat Utilization)

  • 김동섭
    • 한국유체기계학회 논문집
    • /
    • 제6권3호
    • /
    • pp.28-35
    • /
    • 2003
  • This paper presents analysis results for the effect of power control strategies on the part load performance of gas turbine based power generation systems utilizing exhaust heat of the gas turbine such as combined cycle power plants and regenerative gas turbines. For the combined cycle, part load efficiency variations were compared among different single shaft gas turbines representing various technology levels. Power control strategies considered were fuel only control and IGV control. It has been observed that gas turbines with higher design performances exhibit superior part load performances. Improvement of part load efficiency of the combined cycle by adopting air flow modulation was analyzed and it was concluded that since the average combined cycle performance is affected by the range of IGV control as well as its temperature control principle, a control strategy appropriate for the load characteristics of the individual plant should be adopted. For the regenerative gas turbine, it is likewise concluded that maintaining exhaust temperature as high as possible by air flow rate modulation is required to increase part load efficiency.

가정용 열병합 발전을 위한 스털링 엔진의 열원 온도 및 냉각수 유량에 따른 성능 실험 (Performance Measurements of A Stirling Engine for Household Micro Combined Heat and Power with Heat Source Temperatures and Cooling Flow Rates)

  • 심규호;김민기;이윤표;장선준
    • 한국유체기계학회 논문집
    • /
    • 제18권1호
    • /
    • pp.37-43
    • /
    • 2015
  • A Beta-type Stirling engine is developed and tested on the operation stability and cycle performance. The flow rate for cooling water ranges from 300 to 1500 ml/min, while the temperature of heat source changes from 300 to $500^{\circ}C$. The internal pressure, working temperatures, and operation speed are measured and the engine performance is estimated from them. In the experiment, the rise in the temperature of heat source reduces internal pressure but increases operation speed, and overall, enhances the power output. The faster coolant flow rate contributes to the high temperature limit for stable operation, the cycle efficiency due to the alleviated thermal expansion of power piston, and the heat input to the engine, respectively. The experimental Stirling engine showed the maximum power output of 12.1 W and the cycle efficiency of 3.0 % when the cooling flow is 900 ml/min and the heat source temperature is $500^{\circ}C$.

복합화력 온라인 성능감시 구현을 위한 열소비율 분담 기법 (A Technique of the Combined Cycle Heat Rate Allocation for the On-Line Performance Monitoring System)

  • 주용진;김시문
    • 에너지공학
    • /
    • 제13권3호
    • /
    • pp.173-180
    • /
    • 2004
  • 본 논문에서는 복합화력 발전시스템을 대상으로 한 온라인 성능감시시스템에 적용될 수 있는 열소비율 손실 분담기법을 고안하였다. 이 기법은 현재 운전조건에 대한 기대 열소비율을 계산하여 이를 실제 열소비율과 비교하고 이들의 편차, 즉 손실분을 발전시스템 구성기기(가스터빈 배열회수보일러, 증기터빈, 복수기)로 분담시킴으로써 손실이 어디에서 얼마만큼 발생하는 지를 정량적으로 감지하여 조치할 수 있는 성능관리지표로서 활용된다.

비뉴톤유체의 복합대류 열전달에 관한 실험적 연구 (An Experimental Investigation on Combined Convective Heat Transfer of NonNewtonian Fluids)

  • 김용진
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1770-1779
    • /
    • 1995
  • A combined convective heat transfer study for non-Newtonian fluids was experimentally performed in uniformly heated horizontal tubes with laminar flow in the thermal entry region. Velocity profiles were fully developed at the entrance of the heated sections in the tubes. Aqueous solutions of sodium carboxymethylcellulose(CMC ) were used; their behavior showed a reasonably good fit into the power-law model, .tau.=K.gamma.$^{n}$ . The test sections were made of copper with inside diameters of 3.23 cm and 5.042 cm and lengths of approximately 300 cm. Most experimental runs displayed noticeable secondary flows caused by buoyancy ; when present, secondary flows caused significant increase in the rate of heat transfer over the purely forced-convection case. A correlation, which relates the rate of heat transfer for flows with temperature-dependent properties, free convection effects, and non-newtonian effects, was suggested.