• Title/Summary/Keyword: combined loads

Search Result 490, Processing Time 0.03 seconds

Axial Collapse Behaviour of Ship's Stiffened Panels considering Lateral Pressure Load (횡하중을 고려한 선체보강판넬의 압축 붕괴거동에 관한 연구)

  • Ko, Jae-Yong;Park, Joo-Shin
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.235-245
    • /
    • 2007
  • Stiffened steel plates are basic structural members on the deck and bottom structure in ship, offshore. It has a number of one sided stiffeners in either one or both directions, the latter structure was called grillage structure. At the ship structural desgn stage, one of the major consideration is evaluation for ultimate strength of the hull girder. In general, it is accepted that hull girder strength can be represented by the local strength of the longitudinal stiffened panel. In case of considering hogging condition in a stormy sea, stiffened panel was acting on the bottom structure under axial compressive load induced hull girder bending moment, also simultaneously arising local bending moment induced lateral pressure load. In this paper, results of the structural analysis have been compared with another detailed FEA program and prediction from design guideline and a series analysis was conducted consideration of changing parameters for instance, analysis range, cross-section of stiffener, web height and amplitude of lateral pressure load subjected to combined load (axial compression and lateral pressure load). It has been found that finite element modeling is capable of predicting the behaviour and ultimate load capacity of a simply supported stiffened plate subjected to combined load of axial compression and lateral pressure load It is expected that these results will be used to examine the effect of interaction between lateral pressure and axial loads for the ultimate load-carrying capacity based on the Ultimate Limit State design guideline.

Reduction of Microbial Load on Radish (Raphanus sativus L.) Seeds by Aqueous Chlorine Dioxide and Hot Water Treatments (이산화염소수 및 열수처리에 따른 무(Raphanus sativus L.) 새싹 종자의 미생물 제어 효과)

  • Park, Kee-Jai;Lim, Jeong-Ho;Kim, Ji-Hye;Jeong, Jin-Woong;Jo, Jin-Ho;Jeong, Seong-Woong
    • Food Science and Preservation
    • /
    • v.14 no.5
    • /
    • pp.487-491
    • /
    • 2007
  • This study was conducted to investigate the effect of treatment with squeous chlorine dioxide and hot water on the germination of radish (Raphanus sativus L.) seeds, and reduction of microbial load on the seeds. Increases in treatment and the concentration of aqueous chlorine dioxide in water resulted in increasing reductions in the counts of total aerobic microbes. Seeds treated with aqueous chlorine dioxide (100 ppm/20min, 200ppm/20min) showed about a 10-fold decrease in microbial loads. Germination of seeds was not adversely affected by any treatment tested, although the germination rate of seeds in the group treated at $55^{\circ}C$ for 20 min was reduced by 10% compared to that of control. Combined treatment with hot water and aqueous chlorine dioxide yielded better out comes in both microbial reduction and seed germination rate than did single treatments. A combined treatment with 100 ppm aqueous chlorine dioxide and hot water($45^{\circ}C$ or $50^{\circ}C$) resulted in about a 100-fold decrease in microbial load whereas germination rate showed only a slight increase to $97.0{\sim}97.7%$. Total aerobic microbial counts in radish seeds were decreased by aqueous chlorine dioxide and hot water treatment in the order. aqueous $CIO_2$+ hot water > aqueous $CIO_2$ > chlorinated water > hot water > control.

Simulated tropical cyclonic winds for low cycle fatigue loading of steel roofing

  • Henderson, David J.;Ginger, John D.;Morrison, Murray J.;Kopp, Gregory A.
    • Wind and Structures
    • /
    • v.12 no.4
    • /
    • pp.383-400
    • /
    • 2009
  • Low rise building roofs can be subjected to large fluctuating pressures during a tropical cyclone resulting in fatigue failure of cladding. Following the damage to housing in Tropical Cyclone Tracy in Darwin, Australia, the Darwin Area Building Manual (DABM) cyclic loading test criteria, that loaded the cladding for 10000 cycles oscillating from zero to a permissible stress design pressure, and the Experimental Building Station TR440 test of 10200 load cycles which increased in steps to the permissible stress design pressure, were developed for assessing building elements susceptible to low cycle fatigue failure. Recently the 'Low-High-Low' (L-H-L) cyclic test for metal roofing was introduced into the Building Code of Australia (2007). Following advances in wind tunnel data acquisition and full-scale wind loading simulators, this paper presents a comparison of wind-induced cladding damage, from a "design" cyclone proposed by Jancauskas, et al. (1994), with current test criteria developed by Mahendran (1995). Wind tunnel data were used to generate the external and net pressure time histories on the roof of a low-rise building during the passage of the "design" cyclone. The peak pressures generated at the windward roof corner for a tributary area representative of a cladding fastener are underestimated by the Australian/New Zealand Wind Actions Standard. The "design" cyclone, with increasing and decreasing wind speeds combined with changes in wind direction, generated increasing then decreasing pressures in a manner similar to that specified in the L-H-L test. However, the L-H-L test underestimated the magnitude and number of large load cycles, but overestimated the number of cycles in the mid ranges. Cladding elements subjected to the L-H-L test showed greater fatigue damage than when experiencing a five hour "design" cyclone containing higher peak pressures. It is evident that the increased fatigue damage was due to the L-H-L test having a large number of load cycles cycling from zero load (R=0) in contrast to that produced during the cyclone.

Novel steel bracket and haunch hybrid system for post-earthquake retrofit of damaged exterior beam-column sub-assemblages

  • Kanchanadevi, A.;Ramanjaneyulu, K.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.239-257
    • /
    • 2020
  • In the present study, an innovative steel bracket and haunch hybrid scheme is devised, for retrofitting of earthquake damaged deficient beam-column sub-assemblages. Formulations are presented for evaluating haunch force factor under combined load case of lateral and gravity loads for the design of double haunch retrofit. The strength hierarchies of control and retrofitted beam-column sub-assemblages are established to showcase the efficacy of the retrofit in reversing the undesirable strength hierarchy. Further, the efficacy of the proposed retrofit scheme is demonstrated through experimental investigations carried out on gravity load designed (GLD), non-ductile and ductile detailed beam-column sub-assemblages which were damaged under reverse cyclic loading. The maximum load carried by repaired and retrofitted GLD specimen in positive and negative cycle is 12% and 28% respectively higher than that of the control GLD specimen. Further, the retrofitted GLD specimen sustained load up to drift ratio of 5.88% compared with 2.94% drift sustained by control GLD specimen. Repaired and retrofitted non-ductile specimen, could attain the displacement ductility of three during positive cycle of loading and showed improved ductility well above the expected displacement ductility of three during negative cycle. The hybrid haunch retrofit restored the load carrying capacity of damaged ductile specimen to the original level of control specimen and improved the ductility closer to the expected displacement ductility of five. The total cumulative energy dissipated by repaired and retrofitted GLD, non-ductile and ductile specimens are respectively 6.5 times, 2.31 times, 1.21 times that of the corresponding undamaged control specimens. Further, the damage indices of the repaired and retrofitted specimens are found to be lower than that of the corresponding control specimens. The novel and innovative steel bracket and haunch hybrid retrofit scheme proposed in the present study demonstrated its effectiveness by attaining the required displacement ductility and load carrying capacity and would be an excellent candidate for post-earthquake retrofit of damaged existing RC structures designed according to different design evolutions.

Dwell Point Polices for Shuttles on Shuttle-Based Storage/Retrieval(SBS/RS) System (Shuttle-Based Storage/Retrieval System(SBS/RS)에서의 셔틀 대기점 연구)

  • Ha, Yun-Soo;Chae, Junjae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.3
    • /
    • pp.30-38
    • /
    • 2016
  • Shuttle-Based Storage/Retrieval System (SBS/RS) is relatively new to industry. The system is in the category of Automated Storage/Retrieval System (AS/RS), but it is different in that the SBS/RS uses shuttles as Storage/Retrieval (SR) machine instead using a stacker crane. The shuttles are assigned to each tier on multi-tier system and operated for pick-up or drop-off order. Since the system can handle multiple orders simultaneously, it can provide much higher throughput than that of general AS/RS with single stocker crane. Thus, this new system is well fit to recent tendency of increasing small quantity batch production and orders. One of the drawback of this system is that it needs a lot of investment to set up. The efficient operation of the system would be one of the critical matters to increase economic efficiency of capital investment. In this study, we focused on the dwell point policy for shuttles to find efficient way of operating the system. There are four basic policies for the dwell point and we had simulation-based experiment for two different scenarios based on the speed of the shuttle and inter-arrival time of the loads coming to the system combined with four different policies. As it was mentioned above, this SBS/RS relatively new to the field and there is no such experiment shown on previous research and the study of dwell point policy for this SBS/RS could provide the direct comparison of each policy with different hardware specification; the capability of the system. The policy that achieves most efficient operation among the given environment is proposed and the usability of the system is discussed.

Fatigue Life Analysis of SA508 Gr. 1A Low-Alloy Steel under the Operating Conditions of Nuclear Power Plant (원자력발전소 운전환경에서 SA508 Gr. 1A 저합금강의 피로 수명 분석)

  • Lee, Yong Sung;Kim, Tae Soon;Lee, Jae Gon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.1
    • /
    • pp.50-56
    • /
    • 2010
  • Fatigue has been known as a major degradation mechanism of ASME class 1 components in nuclear power plants. Fatigue damage could be accelerated by combined interaction of several loads and environmental factors. However, the environmental effect is not explicitly addressed in the ASME S-N curve which is based on air at room temperature. Therefore many studies have been performed to understand the environmental effects on fatigue behavior of materials used in nuclear power plants. As a part of efforts, we performed low cycle fatigue tests under various environmental conditions and analyzed the environmental effects on the fatigue life of SA508 Gr. 1a low alloy steel by comparing with higuchi's model. Test results show that the fatigue life depends on water temperature, dissolved oxygen and strain rate. But strain rate over 0.4%/s has little effect on the fatigue life. To find the cause of different fatigue life with ANL's and higuchi's model, another test performed with different heat numbered and heat treated materials of SA508 Gr. 1a. On a metallurgical point of view, the material with bainite microstructure shows much longer fatigue life than that with ferrite/pearlite microstructure. And the characteristics of crack propagation as different microstructure seem to be the main cause of different fatigue life.

  • PDF

A New Refined Truss Modeling for Shear-Critical RC Members (Part I) - lts derivation of Basic Concept - (전단이 지배하는 RC부재의 새로운 트러스 모델링 기법 연구 (전편) - 기본 개념 유도를 중심으로 -)

  • Kim Woo;Jeong Jae-Pyong;Kim Dae-Joong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.785-794
    • /
    • 2004
  • This paper describes a new refined truss modeling technique derived based on the well-known relationship of V=dM/dx=zdT/dx+Tdz/dx in a reinforced concrete beam subjected to combined shear and moment loads. The core of the model is that a new perspective on the shear behavior can be gained by considering the variation of the internal arm length along the span, so that the shear resistance mechanism can be expressed by the sum of two base components; arch action and beam action. The sharing ratio of these two actions is determined by accounting for the compatibility of deformation associated to the two actions. Modified Compression Field Theory and the tension-stiffening effect formula in CEB/FIP MC-90 are employed in calculating the deformations. Then the base equation of V=dM/dx has been numerically duplicated to form a new refined truss model.

Element and Crack Geometry Sensitivities of Finite Element Analysis Results of Linear Elastic Stress Intensity Factor for Surface Cracked Straight Pipes (표면균열이 있는 직관에 대한 선형탄성 응력확대계수 유한요소해석 결과의 요소 및 균열형상 민감도)

  • Ryu, Dongil;Bae, Kyung-Dong;Je, Jin-Ho;An, Joong-Hyok;Kim, Yun-Jae;Song, Tae-Kwang;Kim, Yong-Beum
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.521-527
    • /
    • 2013
  • This study provides the elastic stress intensity factors, K, for circumferential and longitudinal surface cracked straight pipes under single or combined loads of internal pressure, bending, and torsion based on three-dimensional (3D) finite element (FE) analyses. FE results are compared with two different types of defect assessment codes (API-579-1 and RCC-MR A16) to prove the accuracy of the FE results and the differences between the codes. Through the 3D FE analysis, it is found that the stress intensity factors are sensitive to the number of elements, which they were believed to not be sensitive to because of path independence. Differences were also found between the FE analysis results for crack defining methods and the results obtained by two different types of defect assessment codes.

Range Query Processing of Distributed Moving Object Databases using Scheduling Technique (스케쥴링 기법을 이용한 분산 이동 객체 데이타베이스의 범위 질의 처리)

  • Jeon, Se-Gil;Hwang, Jae-Il;Nah, Youn-Mook
    • Journal of Korea Spatial Information System Society
    • /
    • v.6 no.2 s.12
    • /
    • pp.51-62
    • /
    • 2004
  • Recently, the location-based service for moving customers is becoming one of the most important service in mobile communication area. For moving object applications, there are lots of update operations and such update loads are concentrated on some particular area unevenly. The primary processing of LBS application is spatio-temporal range queries. To improve the throughput of spatio-temporal range queries, the time of disk I/O in query processing should be reduced. In this paper, we adopt non-uniform two-level grid index structures of GALIS architecture,which are designed to minimize update operations. We propose query scheduling technique using spatial relationship and time relationship and a combined spatio-temporal query processing method using time zone concepts to improve the throughput of query processing. Some experimental results are shown for range queries with different query range to show the performance tradeoffs of the proposed methods.

  • PDF

DEVELOPMENT OF AN OPTIMIZATION TECHNIQUE OF A WARM SHRINK FITTING PROCESS FOR AN AUTOMOTIVE TRANSMISSION PARTS

  • Kim, H.Y.;Kim, C.;Bae, W.B.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.847-852
    • /
    • 2006
  • A fitting process carried out in the automobile transmission assembly line is classified into three classes; heat fitting, press fitting, and their combined fitting. Heat fitting is a method that applies heat in the outer diameter of a gear to a suitable range under the tempering temperature and assembles the gear and the shaft made larger than the inner radius of the gear. Its stress depends on the yield strength of a gear. Press fitting is a method that generally squeezes gear toward that of a shaft at room temperature by a press. Another method heats warmly gear and safely squeezes it toward that of a shaft. A warm shrink fitting process for an automobile transmission part is now gradually increased, but the parts (shaft/gear) assembled by the process produced dimensional change in both outer diameter and profile of the gear so that it may cause noise and vibration between gears. In order to solve these problems, we need an analysis of a warm shrink fitting process in which design parameters such as contact pressure according to fitting interference between outer diameter of a shaft and inner diameter of a gear, fitting temperature, and profile tolerance of gear are involved. In this study, an closed form equation to predict the contact pressure and fitting load was proposed in order to develop an optimization technique of a warm shrink fitting process and verified its reliability through the experimental results measured in the field and FEM, thermal-structural coupled field analysis. Actual loads measured in the field have a good agreement with the results obtained from theoretical and finite element analysis and also the expanded amounts of the outer diameters of the gears have a good agreement with the results.