• Title/Summary/Keyword: combined loads

Search Result 490, Processing Time 0.027 seconds

Vibration Fatigue for the Bogie frame of the Rubber Wheel AGT (고무차륜형 AGT 주행장치의 진동피로해석)

  • 유형선;윤성호;변상윤;편수범
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.3
    • /
    • pp.117-124
    • /
    • 2000
  • The rubber wheel-type AGT has two major kinds of bogie; one is the bogie type and the other steering one. Both are important vehicular structure to support the whole running vehicle and passenger loads. This paper deals with the static analysis for the two types of bogie frame subjected to combined external forces, as well as independent ones specified in UIC 515-4. Furthermore, the dynamic analysis is performed under vibrational loading conditions so as to compare dynamic characteristics, Numerical results by using commercial packages, I-DEAS and NASTRAN show that maximum stresses do not exceed the yield strength level of material used for both bogies. From an overall viewpoint of strength, the bogie type turns out to be superior to the steering type except for the case of a lateral loading. It is also observed that the steering type shows a characteristics of low frequency behavior during a course of searching for structurally weak areas to be stiffened. The vibrational fatigue analysis for each bogie frame depends on the loading time history conditions which is applied. Time History Central Database List in the NASTRAN package. Subsequent1y, the fatigue life of bogie type is longer than the steering type.

  • PDF

Heat Transfer in a Duct with Various Cross Section of Ribs (초소형 열병합발전시스템(${\mu}CHP$) 운전거동 시뮬레이션 프로그램 개발)

  • Cho, Woo-Jin;Lee, Kwan-Soo;Kim, In-Kyu
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.172-176
    • /
    • 2009
  • We developed a program, "CogenSim-$\mu$," to simulate the operation of micro-combined heat and power (${\mu}CHP$) system. The CogenSim-$\mu$ can reflect the variation of energy efficiency by handling the real-time loads (heat and power) fluctuation. The result obtained using this program was compared with the real operation of 30 kWe gas engine driven ${\mu}CHP$. It was found that the CogenSim-$\mu$ could predict the amount of generated-power, recovered-heat and consumed-fuel with the error less than 3%, and heat and power efficiency with the error less than 4%. The CogenSim-$\mu$ reconstructed the profile of on-off cycle, which represented the operation of a facility, with more than 93% accuracy. The CogenSim-$\mu$ can reflect the effects of various factors such as size of thermal storage tank, desired temperature of reservoir water, natural frequency of generator, etc. As a result, the CogenSim-$\mu$ can be used to optimize the ${\mu}CHP$ operation.

  • PDF

Seismic Analysis of the Main Control Boards for Nuclear Power Plant (원자력발전소의 Main Control Boards에 대한 내진 해석)

  • Byeon, Hoon-Seok;Lee, Joon-Keun;Kim, Jin-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.498-498
    • /
    • 2001
  • Seismic qualification of the Main Control Boards for nuclear power plants has been performed with the guideline of AS ME Section III. US NRC Reg. Guide and IEEE 344 code. The analysis model of the Main Control Boards is consist of beam. shell and mass element by using the finite element method. and, at the same time. the excitation forces and other operating loads for each model are encompassed with respect to different loading conditions. As the fundamental frequencies of the structure are found to be less than 33Hz. which is the upper frequency limit of the seismic load, the response spectrum analysis using ANSYS is performed in order to combine the modal stresses within the frequency limit. In order to confirm the structural and functional integrity of the major components, modal analysis theory is adopted to derive the required response spectrum at the component locations. As all the combined stresses obtained from the above procedures are less than allowable stresses and no mechanical or electrical failures are found from the seismic testing, it concludes the Main Control Boards is dynamically qualified for seismic conditions. Although the authors had confirmed the structural and functional integrity of both Main Control Boards and all the component, in this paper only the seismic analysis of the Main Control Board is introduced.

  • PDF

Process Modification and Numerical Simulation for an Outer Race of a CV Joint using Multi-Stage Cold Forging (등속조인트용 외륜의 다단 냉간 단조공정을 위한 공정개선 및 유한요소 해석)

  • Kang, B.S.;Ku, T.W.
    • Transactions of Materials Processing
    • /
    • v.23 no.4
    • /
    • pp.211-220
    • /
    • 2014
  • The outer race of a constant velocity (CV) joint having six inner ball grooves has traditionally been manufactured by multi-stage warm forging, which includes forward extrusion, upsetting, backward extrusions, necking, ironing and sizing, and machining. In the current study, a multi-stage cold forging process is examined and an assessment for replacing and modifying the conventional multi-stage warm forging is made. The proposed procedure is simplified to the backward extrusion of the conventional process, and the sizing and necking are combined into a single sizing-necking step. Thus, the forging surface of the six ball grooves can be obtained without additional machining. To verify the suitability of the proposed process, a 3-dimensional numerical simulation on each operation was performed. The forging loads were also predicted. In addition, a structural integrity evaluation for the tools was carried out. Based on the results, it is shown that the dimensional requirements of the outer race can be well met.

Shear Strength Incorporated with Internal Force State Factor in RC Slender Beams (내력상태계수 도입을 통한 RC보의 전단강도분석)

  • 정제평;김희정;김우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.912-917
    • /
    • 2003
  • In this paper a new truss modeling technique for describing the beam shear resistance mechanism is proposed based on the reinterpretation of the well-known relationship between shear and the rate of change of bending moment in a reinforced concrete beam subjected to combined shear and moment loads. The core of the model is that a new perspective on the shear resistance can be gained by viewing the internal stress filed in terms of the superposition of two base components of shear resistance; arch action and beam action. The arch action can be described as a simple tied-arch which is consisted of a curved compression chord and a tension tie of the longitudinal steel, while the beam action between the two chords can be modeled as a membrane shearing element with forming a smeared truss action. The compatibility of deformation associated to the two action is taken into account by employing an experimental factor or internal state force factor a. Then the base equation of V=dM/dx is numerically duplicated. The new model was examined by the 362 experimental results. The shear strength predicted by the internal force state factor a show better correlation with the tested values than the present shear design.

  • PDF

Evaluating on the Effects of Circumferential Thinning Angle and Bending Load on the Failure Pressure of Wall-Thinned Elbow through Burst Tests (파열 시험을 통한 감육곡관의 손상압력에 미치는 원주방향 결함 폭과 굽힘하중의 영향 평가)

  • Kim, Jin-Weon;Na, Yeon-Soo;Lee, Sung-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.14-19
    • /
    • 2006
  • This study performed burst tests using real-scale pipe elbow containing simulated local wall-thinning to evaluate the effects of circumferential thinning angle and bending load on the failure pressure of wall-thinned elbow. The tests were carried out under the loading conditions of internal pressure and combined internal pressure and bending loads. Three circumferential thinning angles, ${\theta}/{\Pi}=0.125,\;0.25,\;0.5$, and different thinning locations, intrados and extrados, were considered. The test results showed that the failure pressure of wall-thinned elbow decreased with increasing circumferential thinning angle for both thinning locations. This tendency is different from that observed in the wall-thinned straight pipe. Also, the failure pressure of intrados wall-thinned elbow was higher than that of extrados wall-thinned elbow with the same thinning depth and equivalent thinning length. In addition, the effect of bending moment on the failure pressure was not obvious.

Structural analysis and optimization of large cooling tower subjected to wind loads based on the iteration of pressure

  • Li, Gang;Cao, Wen-Bin
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.735-753
    • /
    • 2013
  • The wind load is always the dominant load of cooling tower due to its large size, complex geometry and thin-wall structure. At present, when computing the wind-induced response of the large-scale cooling tower, the wind pressure distribution is obtained based on code regulations, wind tunnel test or computational fluid dynamic (CFD) analysis, and then is imposed on the tower structure. However, such method fails to consider the change of the wind load with the deformation of cooling tower, which may result in error of the wind load. In this paper, the analysis of the large cooling tower based on the iterative method for wind pressure is studied, in which the advantages of CFD and finite element method (FEM) are combined in order to improve the accuracy. The comparative study of the results obtained from the code regulations and iterative method is conducted. The results show that with the increase of the mean wind speed, the difference between the methods becomes bigger. On the other hand, based on the design of experiment (DOE), an approximate model is built for the optimal design of the large-scale cooling tower by a two-level optimization strategy, which makes use of code-based design method and the proposed iterative method. The results of the numerical example demonstrate the feasibility and efficiency of the proposed method.

Position and swing angle control for loads of overhead cranes (천정크레인 부하의 위치 및 흔들림 제어)

  • Lee, Ho-Hoon;Cho, Sung-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.297-304
    • /
    • 1997
  • This paper presents a systematic design method of an anti-swing control law for overhead cranes. A velocity servo system for the trolley of a crane is designed based on the dynamics of the trolley and its load. The velocity servo system compensates for the effects of load swing on the trolley dynamics so that the velocity servo is independent of load swing. The velocity servo system is used for the design of a position servo system for the trolley via the loop shaping method. The position servo system and the swing dynamics of the load are then used to design an angle control system for load swing based on the root locus method. The combined position servo and the angle control systems constitute the overall control system. In the presence of low frequency disturbances, the proposed control law guarantees accurate position control for the trolley and fast damping for load swing. Furthermore, the performance of the proposed control law is independent of the mass of the load. Experimental results on a prototype crane show the effectiveness of the proposed anti-swing control law.

Component structural analysis on 15kW class wave energy converter

  • Singh, Patrick Mark;Chen, Zhenmu;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.821-827
    • /
    • 2015
  • This study concentrates on a wave energy converter with floaters that extracts the ocean's energy by moving up and down with the wave motion. The floater is connected to an arm structure, including a hydraulic cylinder that drives a hydraulic generator. This study focuses on a structural analysis of the floater unit, including arm and cylinder components, platform and jack-up system, along with spud columns. Previous studies have been conducted for miniature models for experimentation, but this study focuses on the full-scale model structural analysis. Static structural analysis is conducted using fine numerical grids. Due to the complexity of the whole model, it is analyzed in separate pieces. The floater unit, with arm and cylinder, are combined into one system. The platform is analyzed separately as a single system. There are four jack-up systems for each spud column; only one jack-up system is analyzed, as uniform loads are assumed on each system. There are several load cases for each system, all of which are analyzed thoroughly for stress (von Mises, shear, and normal) and deformation. Acceptable results were obtained for most of the components; unsafe components were redesigned.

Shunt Active Filter for Multi-Level Inverters Using DDSRF with State Delay Controller

  • Rajesh, C.R.;Umayal, S.P.
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.863-870
    • /
    • 2018
  • The traditional power control theories for the harmonic reduction methods in multilevel inverters are found to be unreliable under unbalanced load conditions. The unreliability in harmonic mitigation is caused by voltage fluctuations, non-linear loads, the use of power switches, etc. In general, the harmonics are reduced by filters. However, such devices are an expensive way to provide a smooth and fast response to secure power systems during dynamic conditions. Hence, the Decoupled Double Synchronous Reference Frame (DDSRF) theory combined with a State Delay Controller (SDC) is proposed to achieve a harmonic reduction in power systems. The DDSRF produces a sinusoidal harmonic that is the opposite of the load harmonic. Then, it injects this harmonic into power systems, which reduces the effect of harmonics. The SDC is used to reduce the delay between the compensation time for power injection and the generation of a reference signal. The proposed technique has been simulated using MATLAB and its reliability has been verified experimentally under unbalanced conditions.