• Title/Summary/Keyword: combined device

Search Result 499, Processing Time 0.027 seconds

A Study on the Discontinuous Energy Ceneration System for Power Compensation (불연속 에너지 발생장치의 에너지 보상 시스템에 대한 연구)

  • Lee, Jeong-Il;Lim, Jung-Yeol;Kang, Byung-Bog;Cha, In-Su
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.133-138
    • /
    • 2002
  • The developments of the solar and the wind power energy are necessary since the future alternative energies that have no pollution and no limitation are restricted. Currently power generation system of MW scale has been developed, but it still has a few faults with the weather condition. In order to solve these existing problems, combined generation system of photovoltaic(400W) and wind power generation system(400W) was suggested. It combines wind power and solar energy to have the supporting effect from each other. However, since even combined generation system cannot always generate stable output with ever-changing weather condition, power compensation device that uses elastic energy of spiral spring to combined generation system was also added for the present study. In an experiment, when output of system gets lower than 12V(charging voltage), power was continuously supplied to load through the inverter by charging energy obtained from generating rotary energy of spiral spring operates in small scale generator.

  • PDF

An Experimental Study of a Water Type Glazed PV/Thermal Combined Collector Module (액체식 Glazed PVT 복합모듈의 성능실험 연구)

  • Kim, Jin-Hee;Kim, Jun-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.260-265
    • /
    • 2008
  • The excess heat that is generated from PV modules can be removed and converted into useful thermal energy. A photovoltaic/thermal (PVT) module is a combination of photovoltaic module with a solar thermal collector, forming one device that converts solar radiation into electricity and heat simultaneously. In general, two types of PVT can be distinguished : glass-covered PVT module, which produces high-temperature heat but has a slightly lower electrical yield, and uncovered PVT module, which produces relatively low-temperature heat but has a somewhat higher electrical performance. In this paper, the experimental performance of water type PVT combined module, glass-covered, analyzed. The electrical and thermal performance of the module were measured in outdoor conditions, and the results are analyzed. The results showed that the thermal efficiency of the PVT module was 27.6% average and its PV efficiency was about 10.0% average, both depending on solar radiation, inlet water temperature and ambient temperature.

An Experimental Study on the Drying and Curing Characteristics of Conductive metallic ink using Combined IR and Hot Air Type in the Roll-to-Roll System (R2R 공정에서 적외선가열과 열풍을 혼합한 건조방식에서 전도성 금속 잉크의 건조 및 큐어링 공정 특성에 관한 실험적 연구)

  • Kim, Young-Mo;Hong, Seung-Chan;Lee, Jai-Hyo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.73-78
    • /
    • 2010
  • This research is about the drying and curing characteristic of conductivity metallic ink on-line curing device in order to improve the curing time for productivity in RFID Gravure printing. The curing process is carried out to increase the electric conductivity after the metallic ink is printed on the substrate. The metal ink is composed of nano-sized silver or copper particles. In this research, the combined IR and Hot air curing system is used and its results is compared with those of oven, IR and Hot Air type respectively. Generally the curing time in the past is about 3 minutes. But the combined system (IR+Hot Air) in this research shows that curing time is less than 30 seconds. These results is much faster than those of other system. This study can be help to make Roll-to-Roll drying and curing process for mass and continuous production on-line.

Analyzed Model of The Active Filter combined with SMES

  • Kim A-Rong;Kim Jae-Ho;Kim Hae-Jong;Kim Seok-Ho;Seong Ki-Chul;Park Min-Won;Yu In-Keun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.2
    • /
    • pp.20-24
    • /
    • 2006
  • Recently, utility network is becoming more and more complicated and huge due to IT and OA devices. In addition to, demands of power conversion devices which have non-linear switching devices are getting more and more increased. Consequently, because of the non-linear power semiconductor devices, current harmonics are unavoidable. Sometimes those current harmonics flow back to utility network and become one of the main reasons which can make the voltage distortion. Also, it makes noise and heat loss. On the other hands, voltage sag from sudden increasing loads is also one of the terrible problems inside of utility network. In order to compensate the current harmonics and voltage sag problem, AF(active filter) systems could be a good solution method. SMES is a very good promising source due to it's high response time of charge and discharge. Therefore, the combined AF and SMES system can be a wonderful device to compensate both harmonics current and voltage sag. However, SMES needs a superconducting magnetic coil. Because of using this superconducting magnetic coil, quench problem caused by unexpected reasons have always been unavoidable. Therefore, to solve out mentioned above, this paper presents a decisive method using shunt and series active filter system combined with SMES. Especially, authors analyzed the change of original energy capacity of SMES regarding to the size of resistance caused by quench of superconducting magnetic coil.

Optimal Operating Condition of Vortex Separator for Combined Sewer Overflows Treatment (합류식 하수관거 월류수 처리를 위한 와류형 분리장치의 최적 운전조건)

  • Han, Jung-kyun;Joo, Jae-young;Lee, Bum-joon;Na, Ji-hun;Park, Chul-hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.557-564
    • /
    • 2009
  • A combined sewer system can quickly drain both storm water and sewage, improve the living environment and resolve flood measures. A combined sewer system is much superior to separate sewer system in reduction of the non-point source pollutant load. However, during rainfall. it is impossible in time, space and economic terms to cope with the entire volume of storm water. A sewage system that exceeds the capacity of the sewer facilities drain into the river mixed with storm-water. In addition, high concentration of CSOs by first-flush increase pollution load and reduce treatment efficiency in sewage treatment plant. The aim of this study was to develope a processing unit for the removal of high CSOs concentrations in relation to water quality during rainfall events in a combined sewer. The most suitable operational design for processing facilities under various conditions was also determined. With a designed discharge of 19.89 m/min, the removal efficiency was good, without excessive overflow, but it was less effective in relation to underflow, and decreased with decreasing particle size and specific gravity. It was necessary to lessen radius of vortex separator for increasing inlet velocity in optimum range for efficient performance, and removal efficiency was considered to high because of rotation increases through enlargement of comparing height of vortex separator in diameter. By distribution of influent particle size, the actual turbulent flow and experimental results was a little different from the theoretical removal efficiency due to turbulent effect in device.

The Experimental Performance of Rectangular Tube Absorber PV/Thermal Combined Collector Module (사각튜브부착형 흡열판을 적용한 Unglazed PVT 복합모듈의 열적 전기적 성능분석)

  • Jeong, Seon-Ok;Chun, Jin-Aha;Kim, Jin-Hee;Kim, Jun-Tae;Cho, In-Soo;Nam, Seung-Baeg
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.87-92
    • /
    • 2011
  • The heat from PV modules should be removed for better electrical performance, and can be converted into useful thermal energy. A photovoltaic-thermal(PVT)module is a combination of PV module with a solar thermal collector which forms one device that converts solar radiation into electricity and heat simultaneously. The performance of the PV/Thermal combined collector module is directly influenced by solar radiation that also has an effect on PV module temperature. It is also has believe that the energy performance of PV/T collector is related to absorber design as well as PV module temperature. The existing study has been paid to the PV/Thermal combined collector module with circle tube absorbers. The aim of this study is to analyze the experimental performance of the PV/Thermal combined collector rectangular tube absorbers according to solar radiation. The experimental result show that the average thermal and electrical efficiencies of the PVT collector were 43% and14.81% respectively. Solar radiation is one of the most influential factors to determine the energy performance of PVT collector, but from a certain level of solar radiation the PVT collector receives on, its efficiencies began to decrease.

  • PDF

Time delay control with state feedback for azimuth motion of the frictionless positioning device

  • Jeong, Ho-Seop;Lee, Chong-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.385-388
    • /
    • 1996
  • A time delay controller with state feedback is proposed for azimuth motion control of the frictionless positioning device which is subject to the variations of inertia in the presence of measurement noise. The time delay controller, which is combined with a low-pass filter to attenuate the effect of measurement noise, ensures the asymptotic stability of the closed loop system. It is found that the low-pass filter tends to increase the robustness in the design of time delay controller as well as the gain and phase margins of the closed loop system. Numerical and experimental results support that the proposed controller guarantees a good tracking performance irrespective of the variation of inertia and the presence of measurement noise.

  • PDF

Development of a Hybrid Mount System Combined Airspring with Piezostack Actuator for Microvibration (공기스프링과 압전작동기를 결합한 복합형 미진동 방진마운트 시스템 개발)

  • Moon, S.J.;Jung, H.J.;Shin, Y.H.;Jang, D.D.;Jeong, J.A.;Moon, Y.J.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.1
    • /
    • pp.56-65
    • /
    • 2011
  • A new hybrid mount system is proposed for microvibration control in a high-tech factory. The mount consists of an airspring as a passive device and a piezostack actuator as an active device. The two devices are connected in series. Some numerical simulations and experimental tests are carried out to evaluate isolation performance of the mount system comprising of four proposed hybrid mounts. As a control logic, the specific algorithm is adopted for considering multiple target frequencies of excitation based on a Filtered-X LMS algorithm. The results are compared with isolation performance of the passive airspring mount system. It is confirmed that the proposed hybrid mount system has great performance on microvibration.

A New Technique to Improve ZnO-based FBAR Device Performances

  • Mai, Linh;Lee, Jae-Young;Pham, Van Su;Yoon, Gi-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.437-440
    • /
    • 2007
  • This paper presents the improvement of the resonance characteristics of film bulk acoustic-wave resonator (FBAR) devices fabricated on multilayer Bragg reflectors (BRs) based on inserting ultra-thin chromium (Cr) adhesion layers into BRs and post-annealing processes. The measurements show excellent improvement of return loss $(S_{11})$ and Q-factor by the combined use of Cr adhesion layers and thermal treatments particularly for 120 minutes at $200^{\circ}C$.

  • PDF

Characteristics Simulation of Electronics Cooling for a High-Temperature Superconducting Flux Flow Transistor Circuit (고온 초전도 자속흐름 트랜지스터에 적용된 전자냉각 특성 시뮬레이션)

  • Ko, Seok-Cheol;Kang, Hyeong-Gon;Lim, Sung-Hun;Du, Ho-Ik;Lee, Jong-Hwa;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1063-1066
    • /
    • 2002
  • An equivalent circuit for the superconductor flux flow transistor(SFFT) was combined with high temperature cooling device, based on the analogy between thermal and electrical variables using the high-temperature superconductor(HTS), is proposed. The device is composed of parallel weak links with a nearby magnetic control line. A model has been developed that is based on solving the equation of motion of Abrikosov vortices subject to Lorentz viscous and pinning forces as well as magnetic surface barriers. The use of thermal models the global performance of thermal cooling circuit and signal system to be checked by using electrical circuit analysis programs such as SPICE.

  • PDF