• Title/Summary/Keyword: combined bending and torsion

Search Result 36, Processing Time 0.018 seconds

Seismic behavior of steel truss reinforced concrete L-shaped columns under combined loading

  • Ning, Fan;Chen, Zongping;Zhou, Ji;Xu, Dingyi
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.139-152
    • /
    • 2022
  • Steel-reinforced concrete (SRC) L-shaped column is the vertical load-bearing member with high spatial adaptability. The seismic behavior of SRC L-shaped column is complex because of their irregular cross sections. In this study, the hysteretic performance of six steel truss reinforced concrete L-shaped columns specimens under the combined loading of compression, bending, shear, and torsion was tested. There were two parameters, i.e., the moment ratio of torsion to bending (γ) and the aspect ratio (column length-to-depth ratio (φ)). The failure process, torsion-displacement hysteresis curves, and bending-displacement hysteresis curves of specimens were obtained, and the failure patterns, hysteresis curves, rigidity degradation, ductility, and energy dissipation were analyzed. The experimental research indicates that the failure mode of the specimen changes from bending failure to bending-shear failure and finally bending-torsion failure with the increase of γ. The torsion-displacement hysteresis curves were pinched in the middle, formed a slip platform, and the phenomenon of "load drop" occurred after the peak load. The bending-displacement hysteresis curves were plump, which shows that the bending capacity of the specimen is better than torsion capacity. The results show that the steel truss reinforced concrete L-shaped columns have good collapse resistance, and the ultimate interstory drift ratio more than that of the Chinese Code of Seismic Design of Building (GB50011-2014), which is sufficient. The average value of displacement ductility coefficient is larger than rotation angle ductility coefficient, indicating that the specimen has a better bending deformation resistance. The specimen that has a more regular section with a small φ has better potential to bear bending moment and torsion evenly and consume more energy under a combined action.

Seismic behavior of steel reinforced concrete cross-shaped column under combined torsion

  • Chen, Zongping;Liu, Xiang
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.407-420
    • /
    • 2018
  • Experiments were performed to explore the hysteretic performance of steel reinforced concrete (SRC) cross-shaped columns. Nine specimens were designed and tested under the combined action of compression, flexure, shear and torsion. Torsion-bending ratio (i.e., 0, 0.14, 0.21) and steel forms (i.e., Solid - web steel, T - shaped steel, Channel steel) were considered in the test. Both failure processes and modes were obtained during the whole loading procedure. Based on experimental data, seismic indexes, such as bearing capacity, ductility and energy dissipation were investigated in detail. Experimental results suggest that depending on the torsion-bending ratio, failure modes of SRC cross-shaped columns are bending failure, flexure-torsion failure and torsion-shear failure. Shear - displacement hysteretic loops are fuller than torque - twist angle hysteretic curves. SRC cross-shaped columns exhibit good ductility and deformation capacity. In the range of test parameters, the existence of torque does not reduce the shear force but it reduces the displacement and bending energy dissipation capacity. What is more, the bending energy dissipation capacity increases with the rising of displacement level, while the torsion energy dissipation capacity decreases.

Effect of spiral reinforcement on flexural-shear-torsional seismic behavior of reinforced concrete circular bridge columns

  • Belarbi, Abdeldjelil;Prakash, Suriya;You, Young-Min
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.137-158
    • /
    • 2009
  • This paper investigates the behavior of reinforced concrete (RC) circular columns under combined loading including torsion. The main variables considered in this study are the ratio of torsional moment to bending moment (T/M) and the level of detailing for moderate and high seismicity (low and high transverse reinforcement/spiral ratio). This paper presents the results of tests on seven columns subjected to cyclic bending and shear, cyclic torsion, and various levels of combined cyclic bending, shear, and torsion. Columns under combined loading were tested at T/M ratios of 0.2 and 0.4. These columns were reinforced with two spiral reinforcement ratios of 0.73% and 1.32%. Similarly, the columns subjected to pure torsion were tested with two spiral reinforcement ratios of 0.73% and 1.32%. This study examined the significance of proper detailing, and spiral reinforcement ratio and its effect on the torsional resistance under combined loading. The test results demonstrate that both the flexural and torsional capacities are decreased due to the effect of combined loading. Furthermore, they show a significant change in the failure mode and deformation characteristics depending on the spiral reinforcement ratio. The increase in spiral reinforcement ratio also led to significant improvement in strength and ductility.

Evaluation of Limit Loads for Circumferentially Cracked Pipes Under Combined Loadings (원주방향 표면 결함이 존재하는 배관에 가해지는 비틀림을 포함한 복합하중에 대한 한계하중식 제시)

  • Ryu, Ho-Wan;Han, Jae-Jun;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.453-460
    • /
    • 2015
  • Since the Fukushima nuclear accident, several researchers are extensively studying the effect of torsion on the piping systems In nuclear power plants. Piping installations in power plants with a circumferential crack can be operated under combined loading conditions such as bending and torsion. ASME Code provides flaw evaluations for fully plastic fractures using limit load criteria for the structural integrity of the cracked pipes. According to the recent version of Code, combined loadings are provided only for the membrane and bending. Even though actual operating conditions have torsion loading, the methodology for evaluating torsion load is not established. This paper provides the results of limit load analyses by using finite element models for circumferentially cracked pipes under pure bending, pure torsion, and combined bending and torsion with tension. Theoretical limit load solutions based on net-section fully plastic criteria are suggested and verified with the results of finite element analyses.

Direct design of partially prestressed concrete solid beams

  • Alnuaimi, A.S.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.741-771
    • /
    • 2007
  • Tests were conducted on two partially pre-stressed concrete solid beams subjected to combined loading of bending, shear and torsion. The beams were designed using the Direct Design Method which is based on the Lower Bound Theorem of the Theory of Plasticity. Both beams were of $300{\times}300mm$ cross-section and 3.8 m length. The two main variables studied were the ratio of the maximum shear stress due to the twisting moment, to the shear stress arising from the shear force, which was varied between 0.69 and 3.04, and the ratio of the maximum twisting moment to the maximum bending moment which was varied between 0.26 and 1.19. The required reinforcement from the Direct Design Method was compared with requirements from the ACI and the BSI codes. It was found that, in the case of bending dominance, the required longitudinal reinforcements from all methods were close to each other while the BSI required much larger transverse reinforcement. In the case of torsion dominance, the BSI method required much larger longitudinal and transverse reinforcement than the both the ACI and the DDM methods. The difference in the transverse reinforcement is more pronounce. Experimental investigation showed good agreement between design and experimental failure loads of the beams designed using the Direct Design Method. Both beams failed within an acceptable range of the design loads and underwent ductile behaviour up to failure. The results indicate that the Direct Design Method can be successfully used to design partially prestressed concrete solid beams which cater for the combined effect of bending, shear and torsion loads.

Seismic behavior of reinforced concrete T-shaped columns under compression-bending-shear and torsion

  • Ping, Chen Zong;Weiwei, Su;Yang, Yang
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.431-444
    • /
    • 2021
  • T-shaped column is usually used as side column in buildings, which is one of the weak members in structural system. This paper presented a quasi-static cyclic loading experiment of six specimens of reinforced concrete (RC) T-shaped columns under compression-flexure-shear-torsion combined loadings to investigate the effect in the ratio of torsion to moment (T/M) and axial compression ratio (n) and height-thickness ratio of flange plate (φ) on their seismic performance. Based on the test results, the failure characteristics, hysteretic curves, ductility, energy dissipation, stiffness degradation and strength degradation were analyzed. The results show that the failure characteristics of RC T-shaped columns mainly depend on the ratio of torsion to moment, which can be divided into bending failure, bending-torsion failure and shear-torsion failure. With the increase of T/M ratio, the torsion ductility coefficient increased, and in a suitable range, the torsion and horizontal displacement ductility coefficient of RC T-shaped columns could be effectively improved with the increase of axial compression ratio and the decrease of height-thickness ratio of flange plate. Besides, the energy dissipation capacity of the specimens mainly depended on the bending and shear energy dissipation capacity. On the other hand, the increase of axial compression ratio and the ratio of torsion to moment could accelerate the torsional and bending stiffness degradation of RC T-shaped columns. Moreover, the degradation coefficient of torsion strength was between 0.80 and 0.98, and that of bending strength was between 0.75 and 1.00.

Torsion strength of single-box multi-cell concrete box girder subjected to combined action of shear and torsion

  • Wang, Qian;Qiu, Wenliang;Zhang, Zhe
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.953-964
    • /
    • 2015
  • A model has been proposed that can predict the ultimate torsional strength of single-box multi-cell reinforced concrete box girder under combined loading of bending, shear and torsion. Compared with the single-cell box girder, this model takes the influence of inner webs on the distribution of shear flow into account. According to the softening truss theory and thin walled tube theory, a failure criterion is presented and a ultimate torsional strength calculating procedure is established for single-box multi-cell reinforced concrete box girder under combined actions, which considers the effect of tensile stress among the concrete cracks, Mohr stress compatibility and the softened constitutive law of concrete. In this paper the computer program is also compiled to speed up the calculation. The model has been validated by comparing the predicted and experimental members loaded under torsion combined with different ratios of bending and shear. The theoretical torsional strength was in good agreement with the experimental results.

Fiber reinforced concrete L-beams under combined loading

  • Ibraheem, Omer Farouk;Abu Bakar, B.H.;Johari, I.
    • Computers and Concrete
    • /
    • v.14 no.1
    • /
    • pp.1-18
    • /
    • 2014
  • The addition of steel fibers in concrete mixture is recognized as a non-conventional mass reinforcement scheme that improves the torsional, flexural, and shear behavior of structural members. However, the analysis of fiber reinforced concrete beams under combined torsion, bending, and shear is limited because of the complicated nature of the problem. Therefore, nonlinear 3D finite element analysis was conducted using the "ANSYS CivilFEM" program to investigate the behavior of fiber reinforced concrete L-beams. These beams were tested at different reinforcement schemes and loading conditions. The reinforcement case parameters were set as follows: reinforced with longitudinal reinforcement only and reinforced with steel bars and stirrups. All beams were tested under two different combined loading conditions, namely, torsion-to-shear ratio (T/V) = 545 mm (high eccentricity) and T/V = 145 mm (low eccentricity). Eight intermediate L-beams were constructed and tested in a laboratory under combined torsion, bending, and shear to validate the finite element model. Comparisons with the experimental data reveal that the program can accurately predict the behavior of L-beams under different reinforcement cases and combined loading ratios. The ANSYS model accurately predicted the loads and deformations for various types of reinforcements in L-beams and captured the concrete strains of these beams.

Experimental investigations on seismic responses of RC circular column piers in curved bridges

  • Jiao, Chiyu;Li, Jianzhong;Wei, Biao;Long, Peiheng;Xu, Yan
    • Earthquakes and Structures
    • /
    • v.17 no.5
    • /
    • pp.435-445
    • /
    • 2019
  • The collapses of curved bridges are mainly caused by the damaged columns, subjected to the combined loadings of axial load, shear force, flexural moment and torsional moment, under earthquakes. However, these combined loadings have not been fully investigated. This paper firstly investigated the mechanical characteristics of the bending-torsion coupling effects, based on the seismic response spectrum analysis of 24 curved bridge models. And then 9 reinforced concrete (RC) and circular column specimens were tested, by changing the bending-tortion ratio (M/T), axial compression ratio, longitudinal reinforcement ratio and spiral reinforcement ratio, respectively. The results show that the bending-torsion coupling effects of piers are more significant, along with the decrease of girder curvature and the increase of pier height. The M/T ratio ranges from 6 to 15 for common cases, and influences the crack distribution, plastic zone and hysteretic curve of piers. And these seismic characteristics are also influenced by the compression ratio, longitudinal reinforcement ratio and spiral reinforcement ratios of piers.

Ultimate Strength Interaction of Steel/Concrete Composite Trapezoidal Box Girders Subjected to Concurrent Action of Bending and Torsion (휨과 비틀림을 동시에 받는 강/콘크리트 합성 제형 박스거더의 극한강도 상호작용)

  • Kim, Kyung-Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.465-475
    • /
    • 2010
  • In the horizontally curved bridges, girders are subjected to the combined action of vertical bending and torsion due to their curvatures without any eccentric loads. As subjected to bending and torsion, the ultimate strength of steel/concrete composite box girders are limited by the diagonal tensile stress in the deck concrete induced by the St. Venant torsion. To determine the ultimate strength of composite box girders in bending and torsion and their interactions, this study conducted a 3-dimensional FEA and classical strength of materials investigation. Using ABAQUS, the FEA fully utilized advanced nonlinear analysis techniques simulating material/geometrical nonlinearity and post-cracking behaviors. The ultimate strength from numerical data were compared with theoretically derived values. Concurrent compressive stresses in the concrete deck improve the shear-resisting capacity of concrete, thereby resulting in an increased torsional resistance of the composite box girder in positive bending. The proposed interaction equation is very simple yet it provides a rational lower bound in determining the ultimate strength of concrete/steel composite box girders.