• 제목/요약/키워드: combined algorithm

검색결과 1,614건 처리시간 0.025초

Design wind speed prediction suitable for different parent sample distributions

  • Zhao, Lin;Hu, Xiaonong;Ge, Yaojun
    • Wind and Structures
    • /
    • 제33권6호
    • /
    • pp.423-435
    • /
    • 2021
  • Although existing algorithms can predict wind speed using historical observation data, for engineering feasibility, most use moment methods and probability density functions to estimate fitted parameters. However, extreme wind speed prediction accuracy for long-term return periods is not always dependent on how the optimized frequency distribution curves are obtained; long-term return periods emphasize general distribution effects rather than marginal distributions, which are closely related to potential extreme values. Moreover, there are different wind speed parent sample types; how to theoretically select the proper extreme value distribution is uncertain. The influence of different sampling time intervals has not been evaluated in the fitting process. To overcome these shortcomings, updated steps are introduced, involving parameter sensitivity analysis for different sampling time intervals. The extreme value prediction accuracy of unknown parent samples is also discussed. Probability analysis of mean wind is combined with estimation of the probability plot correlation coefficient and the maximum likelihood method; an iterative estimation algorithm is proposed. With the updated steps and comparison using a Monte Carlo simulation, a fitting policy suitable for different parent distributions is proposed; its feasibility is demonstrated in extreme wind speed evaluations at Longhua and Chuansha meteorological stations in Shanghai, China.

Multi-biomarkers-Base Alzheimer's Disease Classification

  • Khatri, Uttam;Kwon, Goo-Rak
    • Journal of Multimedia Information System
    • /
    • 제8권4호
    • /
    • pp.233-242
    • /
    • 2021
  • Various anatomical MRI imaging biomarkers for Alzheimer's Disease (AD) identification have been recognized so far. Cortical and subcortical volume, hippocampal, amygdala volume, and genetics patterns have been utilized successfully to diagnose AD patients from healthy. These fundamental sMRI bio-measures have been utilized frequently and independently. The entire possibility of anatomical MRI imaging measures for AD diagnosis might thus still to analyze fully. Thus, in this paper, we merge different structural MRI imaging biomarkers to intensify diagnostic classification and analysis of Alzheimer's. For 54 clinically pronounce Alzheimer's patients, 58 cognitively healthy controls, and 99 Mild Cognitive Impairment (MCI); we calculated 1. Cortical and subcortical features, 2. The hippocampal subfield, amygdala nuclei volume using Freesurfer (6.0.0) and 3. Genetics (APoE ε4) biomarkers were obtained from the ADNI database. These three measures were first applied separately and then combined to predict the AD. After feature combination, we utilize the sequential feature selection [SFS (wrapper)] method to select the top-ranked features vectors and feed them into the Multi-Kernel SVM for classification. This diagnostic classification algorithm yields 94.33% of accuracy, 95.40% of sensitivity, 96.50% of specificity with 94.30% of AUC for AD/HC; for AD/MCI propose method obtained 85.58% of accuracy, 95.73% of sensitivity, and 87.30% of specificity along with 91.48% of AUC. Similarly, for HC/MCI, we obtained 89.77% of accuracy, 96.15% of sensitivity, and 87.35% of specificity with 92.55% of AUC. We also presented the performance comparison of the proposed method with KNN classifiers.

Routing Protocol for Wireless Sensor Networks Based on Virtual Force Disturbing Mobile Sink Node

  • Yao, Yindi;Xie, Dangyuan;Wang, Chen;Li, Ying;Li, Yangli
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권4호
    • /
    • pp.1187-1208
    • /
    • 2022
  • One of the main goals of wireless sensor networks (WSNs) is to utilize the energy of sensor nodes effectively and maximize the network lifetime. Thus, this paper proposed a routing protocol for WSNs based on virtual force disturbing mobile Sink node (VFMSR). According to the number of sensor nodes in the cluster, the average energy and the centroid factor of the cluster, a new cluster head (CH) election fitness function was designed. At the same time, a hexagonal fixed-point moving trajectory model with the best radius was constructed, and the virtual force was introduced to interfere with it, so as to avoid the frequent propagation of sink node position information, and reduce the energy consumption of CH. Combined with the improved ant colony algorithm (ACA), the shortest transmission path to Sink node was constructed to reduce the energy consumption of long-distance data transmission of CHs. The simulation results showed that, compared with LEACH, EIP-LEACH, ANT-LEACH and MECA protocols, VFMSR protocol was superior to the existing routing protocols in terms of network energy consumption and network lifetime, and compared with LEACH protocol, the network lifetime was increased by more than three times.

Developing efficient model updating approaches for different structural complexity - an ensemble learning and uncertainty quantifications

  • Lin, Guangwei;Zhang, Yi;Liao, Qinzhuo
    • Smart Structures and Systems
    • /
    • 제29권2호
    • /
    • pp.321-336
    • /
    • 2022
  • Model uncertainty is a key factor that could influence the accuracy and reliability of numerical model-based analysis. It is necessary to acquire an appropriate updating approach which could search and determine the realistic model parameter values from measurements. In this paper, the Bayesian model updating theory combined with the transitional Markov chain Monte Carlo (TMCMC) method and K-means cluster analysis is utilized in the updating of the structural model parameters. Kriging and polynomial chaos expansion (PCE) are employed to generate surrogate models to reduce the computational burden in TMCMC. The selected updating approaches are applied to three structural examples with different complexity, including a two-storey frame, a ten-storey frame, and the national stadium model. These models stand for the low-dimensional linear model, the high-dimensional linear model, and the nonlinear model, respectively. The performances of updating in these three models are assessed in terms of the prediction uncertainty, numerical efforts, and prior information. This study also investigates the updating scenarios using the analytical approach and surrogate models. The uncertainty quantification in the Bayesian approach is further discussed to verify the validity and accuracy of the surrogate models. Finally, the advantages and limitations of the surrogate model-based updating approaches are discussed for different structural complexity. The possibility of utilizing the boosting algorithm as an ensemble learning method for improving the surrogate models is also presented.

Structural live load surveys by deep learning

  • Li, Yang;Chen, Jun
    • Smart Structures and Systems
    • /
    • 제30권2호
    • /
    • pp.145-157
    • /
    • 2022
  • The design of safe and economical structures depends on the reliable live load from load survey. Live load surveys are traditionally conducted by randomly selecting rooms and weighing each item on-site, a method that has problems of low efficiency, high cost, and long cycle time. This paper proposes a deep learning-based method combined with Internet big data to perform live load surveys. The proposed survey method utilizes multi-source heterogeneous data, such as images, voice, and product identification, to obtain the live load without weighing each item through object detection, web crawler, and speech recognition. The indoor objects and face detection models are first developed based on fine-tuning the YOLOv3 algorithm to detect target objects and obtain the number of people in a room, respectively. Each detection model is evaluated using the independent testing set. Then web crawler frameworks with keyword and image retrieval are established to extract the weight information of detected objects from Internet big data. The live load in a room is derived by combining the weight and number of items and people. To verify the feasibility of the proposed survey method, a live load survey is carried out for a meeting room. The results show that, compared with the traditional method of sampling and weighing, the proposed method could perform efficient and convenient live load surveys and represents a new load research paradigm.

Community Detection using Closeness Similarity based on Common Neighbor Node Clustering Entropy

  • Jiang, Wanchang;Zhang, Xiaoxi;Zhu, Weihua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권8호
    • /
    • pp.2587-2605
    • /
    • 2022
  • In order to efficiently detect community structure in complex networks, community detection algorithms can be designed from the perspective of node similarity. However, the appropriate parameters should be chosen to achieve community division, furthermore, these existing algorithms based on the similarity of common neighbors have low discrimination between node pairs. To solve the above problems, a noval community detection algorithm using closeness similarity based on common neighbor node clustering entropy is proposed, shorted as CSCDA. Firstly, to improve detection accuracy, common neighbors and clustering coefficient are combined in the form of entropy, then a new closeness similarity measure is proposed. Through the designed similarity measure, the closeness similar node set of each node can be further accurately identified. Secondly, to reduce the randomness of the community detection result, based on the closeness similar node set, the node leadership is used to determine the most closeness similar first-order neighbor node for merging to create the initial communities. Thirdly, for the difficult problem of parameter selection in existing algorithms, the merging of two levels is used to iteratively detect the final communities with the idea of modularity optimization. Finally, experiments show that the normalized mutual information values are increased by an average of 8.06% and 5.94% on two scales of synthetic networks and real-world networks with real communities, and modularity is increased by an average of 0.80% on the real-world networks without real communities.

Failure analysis of tubes under multiaxial proportional and non-proportional loading paths

  • Mohammad Hossein Iji;Ali Nayebi
    • Steel and Composite Structures
    • /
    • 제47권2호
    • /
    • pp.289-296
    • /
    • 2023
  • The failure of a thin-walled tube was studied in this paper based on three failure models. Both proportional and non-proportional loading paths were applied. Proportional loading consisted of combined tension-torsion. Cyclic non-proportional loading was also applied. It was a circular out-of-phase axial-shear stress loading path. The third loading path was a combination of a constant internal pressure and a bending moment. The failure models under study were equivalent plastic strain, modified Mohr-Coulomb (Bai-Wierzbicki) and Tearing parameter models. The elasto-plastic analysis was conducted using J2 criterion and nonlinear kinematic hardening. The return mapping algorithm was employed to numerically solve the plastic flow relations. The effects of the hydrostatic stress on the plastic flow and the stress triaxiality parameter on the failure were discussed. Each failure model under study was utilized to predict failure. The failure loads obtained from each model were compared with each other. The equivalent plastic strain model was independent from the stress triaxiality parameter, and it predicted the highest failure load in the bending problem. The modified Mohr-Coulomb failure model predicted the lowest failure load for the range of the stress triaxiality parameter and Lode's angle.

Development of Digital Contents for ADHD Treatment Specialized for VR-based Children

  • Dae-Won Park;Chun-Ok Jang
    • International Journal of Advanced Culture Technology
    • /
    • 제11권3호
    • /
    • pp.302-309
    • /
    • 2023
  • This study aimed to develop a VR-based digital therapeutic intervention for the diagnosis and treatment of ADHD. The research combined medical data with virtual reality technology to develop an algorithm for ADHD diagnostic scales and implemented a VR-based digital therapeutic platform using a head-mounted display (HMD). This platform can be used for the diagnosis and treatment of ADHD in children and adolescents. Additionally, we four VR games were developed, including archery timing, Antarctic exploration, grocery shopping, and rhythm-based drumming(RBD), incorporating various psychiatric treatment techniques based on cognitive-behavioral therapy(CBT). To evaluate the usability of this digital therapeutic intervention, a group of experts specialized in counseling psychology participated in the study. The evaluations received highly positive feedback regarding the ability to access the system menu while wearing the HMD, the consistency of terminology used in menus and icons, the usage of actual size for 3D graphic elements, and the support for shortcut key functionality. The assessments also indicated that the games could improve attention, working memory, and impulse control, suggesting potential therapeutic effects for ADHD. This intervention could provide a daily treatment method for families experiencing financial constraints that limit hospital-based therapies, thereby reducing the burden.

LSTM 딥러닝 알고리즘을 활용한 악성코드 API 분류 기술 연구 (Malware API Classification Technology Using LSTM Deep Learning Algorithm)

  • 김진하;박원형
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.259-261
    • /
    • 2022
  • 최근 악성코드는 한 가지의 기법이 아닌 여러 기법들이 조합되고 합쳐지고 중요한 부분만 추출되어 새로운 악성코드들이 제작되고 변형되면서 점차적으로 공격 패턴이 다양해지고 공격 대상 또한 다양해지고 있다. 특히, 기업들의 보안에서의 악성 행위로 인한 피해 사례는 시간이 지날수록 늘어나고 있다. 하지만 공격자들이 여러 악성코드를 조합하더라도 각 악성코드의 종류별로 API들은 반복적으로 사용되고 API들의 패턴들과 이름이 유사할 가능성이 높다. 그로 인해 본 논문은 악성코드에서 자주 사용되는 API의 패턴을 찾고 API의 의미와 유사도를 계산하여 어느 정도의 위험도가 있는지 판단하는 분류 기술을 제안한다.

  • PDF

DEVELOPMENT OF AN INTEGRATED GRADER FOR APPLES

  • Park, K. H.;Lee, K. J.;Park, D. S.;Y. S. Han
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.513-520
    • /
    • 2000
  • An integrated grader which measures soluble solid content, color and weight of fresh apples was developed by NAMRI. The prototype grader consists of the near infrared spectroscopy and machine vision system. Image processing system and an algorithm to evaluate color were developed to speed up the color evaluation of apples. To avoid the light glare and specular reflection, an half-spherical illumination chamber was designed and fabricated to detect the color images of spherical-shaped apples more precisely. A color revision model based on neural network was developed. Near-infrared(NIR) spectroscopy system using NIR reflectance method developed by Lee et al(1998) of NAMRI was used to evaluate soluble solid content. In order to observe the performance of the grader, tests were conducted on conditions that there are 3 classes in weight sorting, 4 classes in combination of color and soluble solid content, and thus 12 classes in combined sorting. The average accuracy in weight, color and soluble solid content is more than about 90 % with the capacity of 3 fruits per second.

  • PDF