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I. INTRODUCTION 

  Alzheimer’s disease (AD) which mostly affects older 

people is a common neurodegenerative brain disease. Mild 

Cognitive Impairment (MCI) is a phase in which a person 

has mild but noticeable changes in thinking patterns. 

Although there is no medication to cure Alzheimer’s, some 

medications have been practiced delaying the onset of 

memory-related symptoms on the patients [1]. Due to this 

reason, proper diagnosis of AD and MCI in the initial phase 

plays a crucial role. AD is a frequently occurring 

neurodegenerative disorder influencing many individuals 

worldwide. Finding specific and sensitive biomarkers on 

the early Alzheimer’s progression is crucial to help 

clinicians and researchers to initiate new diagnostic and 

treatments capability, in addition, to shortening the cost 

burden and time of clinical examinations. To date, the 

identification of Alzheimer’s is mainly relying on clinical 

observation and neuropsychological evaluation [2]. In the 

year 1980s, the National Institute of Neurologic and 

Communication Disorders and Stroke and the Alzheimer’s 

disease and Related Disorders Association (NINCDS-

ADRDA) established clinical diagnostic standards for 

Alzheimer’s based on binary technique. Mentioning in this 

method, cognitive damage is fundamental for the 

identification of Alzheimer’s [3]. Neuropathological 

evidence built on neurofibrillary tangles and senile plaques 

were introduced later [4].  

In the year 2011, National Institute on Aging-

Alzheimer’s Association Group improved the diagnostic 

regulation for Alzheimer’s. These improved diagnostic 

regulations have occupied the binary technique for a further 

pathological explanation of disease: supplementary 

features can be received by measuring Cerebrospinal Fluid 

(CSF), neurogenetic approach, tau, amyloid, and neuronal 

damage features as assessed by neuroimaging analysis, 

including Magnetic Resonance Imaging (MRI), Positron 

Emission Tomography (PET) and Functional Magnetic 

Resonance Imaging (fMRI). MRI and PET imaging 

changes provide a measurement of atrophic regions and 

amyloid/metabolism biomarkers [5, 6], to find AD, even at 

an early stage of Alzheimer’s apparent [7]. Due to the MRI 

modality's non-invasiveness, a substantial amount of effort 

has been set into an improvement of the MRI processing 

scheme to find MRI-associated features, that can be utilized 

for boosting the efficiency of Alzheimer’s diagnosis. Major 
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investigation, which was concentrated on the identification 

of MR image variations between an individual with normal 

and AD subjects. MRI technology provides a highly 

reliable and intuitive basis for the identification of disease. 

Most of the research has proved that specific anatomical 

parts of AD and MCI individuals are sensitive to 

neurodegenerative progress. In the initial phase, individuals 

undergo functional neuronal damage due to loss of gray 

matter and change in cortical thinning [8]. Several studies 

have noted that with the advancement of the pathology, 

there is critical atrophy has been noticed in the medial 

temporal region, such as the amygdala, hippocampus, para-

hippocampal cortices, and entorhinal parts. Therefore, 

structural MRI will thus have an extensive role in the 

identification of AD, and it will have a great role in 

medication. The progress of powerful, automatic, 

significant techniques to utilize MRI brain images is 

therefore crucial stance to further widen the utility of 

structural imaging in the situation of neurodegenerative 

diseases. A huge number of articles have pointed out the 

correlations among quantitative markers from MRI with the 

progression of AD. The performance of automatic detection 

is related to trained export to disease identification using 

MRI images of AD individuals.  

There is large documentation that indicated that various 

anatomical brain parts are affected at various phases of the 

pathology, with initial involvement of the amygdala, 

hippocampus, and entorhinal cortex. Even though these 

parts are responsible for Alzheimer’s, these regions have 

yet to analyze carefully. Common methods that take a 

pathological variation of multiple parts within the entire 

brain consider improving the accuracy in Alzheimer’s 

analysis and to assist the differential assessment of various 

kinds of brain diseases. It is however considered to follow 

holistic steps and to analyze whole structures of the entire 

brain instead of a particular section of the brain. Due to 

initial involvements of these parts of the brain in 

Alzheimer’s, the target of several published articles relies 

on the hippocampal sub-regions to evaluate its shape or 

volume. Cortical thickness and gray matter tissue features 

have also been considered highly anticipating measures in 

the context of Alzheimer’s diagnosis. Other several 

methods rely on deformation-based analysis; voxel-based 

analysis; or tensor-based analysis to measure group 

differences. Commonly, entire brain analyses are effective 

as compared to individual parts such as the hippocampal 

regions. It is widely acknowledged that the hippocampus 

sub-regions play a major role in the short-to long-term 

memory assimilation process. The hippocampal area is 

more prone to be the early brain part to endure suffering. 

Moreover, clinical analysis has shown that the hippocampal 

region is one of the widely used and most potent biomarkers 

for recognizing the transformation from MCI to AD [9], 

[10]. Nevertheless, it is generally considered as a single 

entity due to the crude resolution of MRI. With the 

significant progress in high-resolution MRI images data 

procurement systems, new freedom for especially 

investigating individual hippocampus sub-regions have 

developed. It is now feasible to analyze the presubiculum, 

subiculum, fimbria, hippocampal tail, Dentate Gyrus (DG), 

Hippocampus-Amygdala-Transition-Area (HATA), 

hippocampus fissure, hippocampus, and the four Cornus 

Ammonis regions (CA1-CA4) [11]. It has been proclaimed 

that CA1 volume measurements were hypersensitive than 

whole hippocampus volumetry for finding anatomical 

changes at the early stage of Alzheimer’s [11]. It was also 

noted that hippocampus sub-regions were linked with age-

associated memory loss and specific aspects of memory 

pattern [11]. The cerebral cortical region reflects the 

distinct atrophic mechanisms of an individual with AD and 

MCI. For example, the cortical thickness exposes the rate 

of brain degeneration by identifying the shortest measures 

between an outer and inner area of the cerebral cortex. The 

surface regions denote the measures of cortical pattern, and 

the difference in mean curvature is produced by variation 

of surface regions that gives practical clues on the volume 

changes and folding mechanism in the cerebral cortex. The 

appropriate properties of cortical regions may reveal 

different progression trajectories for various 

neurodegenerative patterns [12]. These measurements 

show a major role in the diagnostic classification of AD and 

MCI, and in the initial detection of MCI individuals who 

carry the risk of onset development of AD [13].  

  Cortical and subcortical, hippocampal, and amygdala 

volume changes are considered the major hallmark of AD 

and therefore it is used as a diagnostic marker. 

Hippocampal and amygdala atrophy in Alzheimer's patients 

usually extend to other brain regions [14, 15]. The pattern 

of hippocampal amygdala, cortical and subcortical atrophy 

pattern can be precisely visualized with anatomical MR 

imaging. Which plays a major role in the clinical detection 

of AD [16, 17]. Moreover, alteration on cortical thickness 

[18], as well as widespread cortical and subcortical atrophy 

have been demonstrated in a patient with AD in comparison 

to healthy control [19]. In this article, we proposed a 

classification framework to precisely diagnose an 

individual with AD and MCI from Healthy Controls (HC). 

Firstly, we perform the cortical and subcortical 

segmentation using Freesurfer (v6.0.0) [20], hippocampal 

subfield, and amygdala nuclei volume segmentation were 

obtained using segmentHA_T1.sh function available on 

Freesurfer [20] and genetics data were obtained from the 

ADNI biomarkers core laboratory. After that, we combined 

all these measures into the predictive model and calculate 

the performance of classification. We hypothesize that the 

combination of the feature will outperform the individual 

separate model. Fig. 1 gives the overall outline of the 
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suggested method. The rest of the flow of the proposed 

method is as follows. 
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Fig. 1. Block diagram of the proposed method. 

 

II. MATERIAL AND METHOD 

2.1. Data 

The datasets used to develop these studies were acquired 

through the Alzheimer's disease Neuroimaging Initiative 

(ADNI) data bank. In this paper, 211 individuals are used 

including 54 AD patients, 99 MCI subjects, and 58 normal 

controls. Table 1 presents the demographic details of all 

these subjects. All structural MRI scans tested in this paper 

were obtained from 1.5 T. 

 

Table 1: Demographics of the subject participants. 

Group HC MCI AD 

Nos. of 

Subjects 

58 99 54 

Men/Female 28/30 67/32 32/22 

Age 75.4* (5.1) 75.4* (7.3) 75.1* (7.1) 

MMSE 29.1* (1.3) 27.2* (1.6) 23.7* (2.1) 

CDR  0 0.5 0.7*(0.4) 

Education 15.7* (3.1) 15.9* (2.8) 14.8* (3.7) 

 

2.2. Data Procurements 

 

MR images used in these studies were obtained through 

1.5T scanners. We collect all MRI images in the 

Neuroimaging Informatics Technology Initiative (NifTi) 

format. Downloaded images were pre-processed for spatial 

distortion and B1 field inhomogeneity correction.  

  The ADNI data bank core laboratory was also granted 

with gene expression and genotype data for an individual 

patient in this article, that was retrieved from peripheral 

blood inspection. The genetic biomarkers were a single 

definitive variable for every single individual, considering 

one of five potential measures :( ε2, ε3), (ε2, ε4), (ε3, ε3), 

(ε3, ε4), or (ε4, ε4). In this article, we particularly 

investigate APoE ε4 allele aspect (noncarrier vs. carrier). 

 

2.3. Features Selection and Classification 

 

  The prime aim of features selection is to choose several 

features from the pool of obtained feature vectors that boost 

the performance accuracy. In this work, we utilized a 

Sequential Features Selection (SFS) procedure. SFS 

method relies on the search technique which begins from 

empty feature vectors S and repeatedly adds features 

selected by some evaluation function which increases the 

performance accuracy by reducing the Mean Square Error 

(MSE). At each step, the new features are to be induced in 

the features set. So, the new extended features set should 

produce maximum classification accuracy as compared 

with the addition of further features vector. SFS is widely 

utilized for its simplicity and calculation speed. Many 

previous kinds of literature proposed and applied the SFS 

algorithm [21]. 

In this proposed technique, we applied the Multi-Kernel 

Support Vector Machine (MK-SVM); Support Vector 

Machine (SVM) is primarily a binary classifier for effective 

analysis of both linearly non-isolated and isolated vectors. 

SVM measures the best hyper-plane that classifies the data 

having maximal classification margin against support 

vectors as the same time training phase described, during 

the testing phase on a new data set.  

Classifier makes a judgment on the support of hyper-

plane. In this work, we used multiple kernels instead of a 

single kernel, such as Gaussian, polynomial, and sigmoid 

kernel which can be utilized together. Various kernels 

available for SVM are united with a convex estate with 

weight based on their selective potential. For a given 

training vector, the kernel was defined as 

; here we utilized kernel 

function of , where  

represent the weight coefficient. The MK-SVM is 

represented as: 
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where  represent a Lagrange multiplier and in this 

method, we decide the optimal value of by Cross-

validation (CV) on the training vectors set utilizing grid 

search in the range of [0,1], maximum validation accuracy 

was achieved at = 0.1.  

We perform the classification comparison of the proposed 

classifier with the K-Nearest Neighbor (KNN) technique. 

The KNN technique is widely used and the simplest 

machine learning approach. For the training procedure, a 

labeled database is fed as an input, and then an unlabeled 

data set is classified on the support of the label of K data set 

nearest the unlabeled data point of the neighborhood.  

Here, K is the main parameter of the algorithm. Euclidean 

distances were used to define the instance of the nearest 

neighbors. Which is defined as:  

 

 

, 

 

(2) 

 

 , (3) 

 

where and represent two features’ vectors utilized for 

performance evaluation on a variable number of neighbors 

to classify Alzheimer’s patients at different value of 

K=3,4,5…9. Testing data sets are classified according to the 

specified K nearest neighbours. 

 

2.4. Cross-validation and Classification Matrix 

 

We also carried out the Cross-Validation (CV) techniques 

on classification dataset. CV is a widely used and popular 

data resampling technique for evaluating the generalization 

idea of an estimating design and preventing the over or 

underfitting of the classifiers. CV is widely utilized in 

predictive modalities such as classification problems. In 

such type of issue, a design is adapted with a familiar 

sample space, which is known as the training data, and a 

sample of unknown data against that the design is evaluated, 

that acknowledge as the test vector set.  

The purpose is to prepare a testing specimen for the design 

in the training phase, and then provide the light inside how 

the appropriate design adopts various independent data 

spaces. Each step of the CV requires the division of data 

sample into independent data sets, then investigate on every 

data sample. After that, the process is validated on other 

sub-data which are known as testing samples.  

To lower the fluctuation, several steps of CV are carried 

out utilizing various distinct separations, and after those 

results are taken as average. CV is a robust procedure in the 

model performance evaluation. The accuracy, specificity, 

sensitivity, Receiver Operating Characteristic (ROC) curve, 

and Cohen Kappa index were adopted to verify the results 

of classification. In this method, we referred to the HC as 

negative samples AD patients as positive samples.  

True-Negative (TN) represents the value of negative 

pattern which is correctly classified; True-Positive (TP) 

indicates the number of positive patterns correctly 

categorize; False-Positive (FP) indicates the value of 

negative pattern classified as positive; similarly, False-

Negative (FN) represents the pattern of positive dataset 

classified as a negative sample. The accuracy, specificity, 

precision, and area under the curve are defined as: 

 

 
 

 

(4) 

 

 
 

 

(5) 

 

 
 

 

(6) 

 

Receiver Operating Characteristic (ROC), popularly known 

as ROC is a curve developed by the plot of false-positive 

rate versus true-positive rate, which can evaluate the 

performance efficiency of a binary classifier. The ROC 

calculates the Area Under the Curve (AUC) which is 

comparable to the performance of the classifiers. 

 

2.5. Cortical and Subcortical Features 

   

The cortical regions were designed using 3D MPRAGE 

images by Freesurfer (http://surfer.nmr.mgh.harvard.edu/) 

software as shown in Fig.2. The complete surface 

construction scheme with Freesurfer mentions and tested in 

previous research [20, 22]. In short, the step cover 

parcellation of white/Gray matter link tessellation, white 

matter, folded surface inflation, and automatic topological 

defects correction in the resulting manifold.  

This surface was then used to start for a deformable 

regions method construction to find the white/Gray and pial 

regions. Cortical regions thickness for each subject was 

computed with 1 mm style uniform gird over both cortical 

regions, thickness is obtained by the precise span between 

the pial surface and white/Gray matter design [22], 

implementing in aspect evaluation of submillimetre 

variation.  

The high-resolution surface-based averaging method is 

used for all images to align a common surface template that 

regulates cortical regions folding styles. Regions of Interest 

(ROI) were mapped back on an approved brain to 

individual’s natural space applying a high-spatial spherical 

transform to obtain the homologous distribution across 

subjects. Then mean thickness and Gray matter volume of 

cortex in individuals ROI were measured. After all, 10-mm 

half height at full-width Gaussian kernel was used to 

smooth cortical thickness to decrease local variations for 

further analysis. 



Journal of Multimedia Information System VOL. 8, NO. 4, December 2021 (pp. 233-242): ISSN 2383-7632 (Online) 

http://doi.org/10.33851/JMIS.2021.8.4.233 

237                                                 

 

 
 

(a) (b) 

 
Fig. 2. Cortical and subcortical features measurement using 

Freesurfer (a) Cortical region and (b) render surface. 

 

2.6. Hippocampal Subfields and Amygdala Nuclei 

Volume 

 

  Hippocampal sub-regions in MRI shown to be important 

in the prediction of Alzheimer’s in the individual having 

mild symptoms. To calculate atrophy measure on 

hippocampal even more precisely and predict the 

Alzheimer’s in MCI as well as individual with normal 

control it is more important to analyze the sub-volume of 

hippocampal. 

In our method, hippocampal segmentation was 

performed using Freesurfer  [20] tool. Hippocampus 

atrophy is considered a major indicator of Alzheimer’s 

disease identification [23]. Hippocampus sub-regions and 

amygdala nuclei subfields estimation were eventually 

performed by implementing the hippocampal sub-regions 

parcellation technique released by Freesurfer (version 

6.0.0).  

This algorithm employs an atlas-based probabilistic 

Bayesian interface and is generated with ultra-high 

resolution ex-vivo MRI imaging data (0.1-0.15 mm 

isotropic) to create a computerized parcellation of the 

amygdala and hippocampal regions. Simultaneous 

segmentation of both structures assures that exclusion of 

overlap among them and the possibility of a void between 

these were excluded [24].  

Hippocampal parcellation comprised 12 sub-regions: 

namely subiculum, presubiculum, parasubiculum, cornu 

amonis fields 1,2/3, and 4 (thereafter indicate to as CA1, 

CA3, and CA4), granule cell sheet of the Dentate Gyrus 

(DG), a transition of Hippocampus-Amygdaloid Area 

(HATA), fimbria (an area of white matter), the molecular 

coat of DG, fissure region of hippocampal, and the tail of 

hippocampal.  

Amygdala sub-regions are divided into nine regions: 

accessory basal and basal, central medial, the lateral, 

cortical, and the anterior amygdala regions, para laminar 

nucleus, and Cortico-Amygdaloid Transition Area (CTA) 

as shown in Fig. 3 
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Fig. 3. (a) Hippocampal subfield and (b) amygdala nuclei volume 

 

III. RESULTS AND DISCUSSION 

 

  Performance evaluation is measured in classification 

accuracy, specificity, sensitivity, precision, F1 score, 

Cohen kappa, and Area Under the Curve (AUC) on receiver 

operating curve for classification of HC vs. MCI, AD vs. 

MCI, and AD vs. HC on obtained biomarkers measures 

individually, and by combining all three features. The 

accompanying AUC represents the measure of 

classification accuracy and AUC, as shown in Table 2, 3 

and 4 and in Fig. 4 respectively; two reference measure 

performs reasonably well. Especially, the hippocampal 

subfield and amygdala nuclei volume features can 

discriminate well between the AD patients and healthy 

controls as compared to cortical and subcortical features 

alone. Most importantly, however, the combination of all 

biomarkers measures outperforms the separate measure. As 

results listed in Table 2, 3, and 4 shows that this algorithm 

gained 94.33% performance accuracy, 95.40% sensitivity, 

96.50% specificity, and 94.30% AUC, along with 92.71 % 

precision, 93.02 % F1 score, and 0.9030% Cohen kappa 

score on the classification of AD vs. HC. For AD vs. MCI 

evaluation, our algorithm achieves a performance accuracy 

of 85.58%, with 95.73% sensitivity, 87.30% specificity, a 

precision of 87.73%, F1 score of 90.30% with a Cohen 

kappa score of 0.8735, and AUC of 91.48%. Similarly for 

classifying HC vs. MCI, our method achieves a 

performance accuracy of 89.77%, 96.15% sensitivity, 87.35% 

specificity, 87.38% precision, 85.30% F1 score along with 
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Cohen kappa score of 0.8908, and AUC of 92.55%. To 

calculate the classification task of our algorithm we adopt 

sequential features selection (wrapper method) to obtain the 

influential features set and increase class separability after 

that we fed that feature set to Multi-Kernel SVM for 

classification. We also compared the classifier performance 

with KNN classifiers and obtained the best results. Ten-fold 

cross-validation is applied for the evaluation of the 

proposed method. Stratified K-fold CV is used to optimize 

the hyper-parameter in the classification method. 

 

Table 2. Results of AD vs. HC classification.  

 

ADvs HC Classifiers AUC ACC SEN SPE PRE F1 Cohen 

CSC KNN 84.25 81.35 85.51 80.54 79.72 86.45 0.8813 

MK-SVM 86.50 85.17 91.30 84.23 83.13 87.03 0.8095 

HV+AN KNN 87.45 83.32 91.55 87.12 94.30 90.97 0.9101 

MK-SVM 92.83 88.73 95.30 87.91 89.03 92.18 0.8502 

Genetics 

(APoEε4) 

KNN 80.05 77.21 83.30 79.75 85.13 87.50 0.8530 

MK-SVM 83.15 83.33 87.09 84.80 90.12 89.54 0.9305 

Proposed 

Method 

KNN 92.45 92.33 94.75 90.93 95.14 93.73 0.8580 

MK-SVM 94.30 94.33 95.40 96.50 92.71 93.02 0.9030 

 

Table 3. Results of AD vs. MCI classification.  

 

ADvsMCI Classifiers AUC ACC SEN SPE PRE F1 Cohen 

CSC KNN 86.25 78.54 88.93 83.75 81.78 85.50 0.8541 

MK-SVM 84.90 80.87 94.17 88.05 83.80 86.03 0.7850 

HV+AN KNN 78.75 81.15 86.80 82.31 87.03 85.87 0.8531 

MK-SVM 83.90 84.33 90.75 84.15 85.33 90.01 0.8353 

Genetics 

(APoEε4) 

KNN 83.90 72.17 88.30 81.70 83.18 85.45 0.8030 

MK-SVM 82.70 77.45 88.49 78.97 83.50 87.01 0.8413 

Proposed 

Method 

KNN 85.45 80.22 87.75 80.55 83.18 85.75 0.8394 

MK-SVM 91.48 85.58 95.73 87.30 87.73 90.30 0.8735 

 

Table 4. Results of HC vs. MCI classification. 

 

HCvsMCI Classifiers AUC ACC SEN SPE PRE F1 Cohen 

CSC KNN 80.35 71.47 81.75 77.41 82.03 86.10 0.8202 

MK-SVM 84.23 78.10 88.35 83.91 82.83 81.03 0.7891 

HV+AN KNN 81.52 75.45 87.50 86.05 84.30 87.88 0.8540 

MK-SVM 85.00 85.45 92.40 86.12 86.33 87.13 0.8303 

Genetics 

(APoE ε4) 

KNN 77.81 68.14 84.30 75.43 83.11 84.05 0.7935 

MK-SVM 80.99 75.75 82.03 87.59 82.20 85.38 0.8805 

Proposed 

Method 

KNN 86.45 81.33 89.05 84.83 86.15 87.91 0.8085 

MK-SVM 92.55 89.77 96.15 87.35 87.38 85.30 0.8908 
(Area Under Curve=AUC; Accuracy=ACC; Sensitivity=SEN; Specificity=SPE; 

Precision=PRE) 

 

  To inspect the performance of the proposed workflow with the 

existing state-of-the-art method we utilized ADNI publicly 

available dataset. The ADNI data bank as the public-private 

collaboration was established in 2003 with assistance from various 

associations within the institution that including the National 

Institute of Aging and National Institute of Biomedical Imaging 

and Bioengineering, along with various private pharmaceutical 

companies and non-profit organizations. The fundamental 

purpose of the ADNI has to observe whether the merging of serial 

PET, MRI, clinical neuropsychological tests, and biomarkers can 

assess the conversion of MCI and initial AD syndrome.  

  In this study, we included 211 sMRI (belonging to HC, MCI, 

and AD) acquired from the ADNI data bank. All subjects meet 

with several neuropsychological assessments to measure several 

clinical characteristics including MMSE score, clinical dementia 

ratio, and functional assessment questionnaire score. 

Demographic information about all participants is present in Table 

1. Both female and male participants were combined in our 

analysis. All MR images utilized in this analysis were obtained 

from an MR scanner with a 1.5T MRI. Initially, we measure the 

cortical, subcortical, and hippocampal sub-field by applying 

Freesufer from each sMRI. The proposed study obtained enhanced 

results for all classification groups (AD vs. MCI, HC vs. MCI, and 

AD vs. HC). For the AD vs. HC group, the MK-SVM classifier 

with feature concatenation obtained an AUC of 94.30 % and an 

accuracy of 94.33 % as compared to the individual features set. 

Similarly, for the AD vs. MCI group, our method with feature 

combination achieved an AUC of 91.48% and an accuracy of 

85.58%. Furthermore, for HC vs. MCI classification, this 

algorithm achieved an AUC of 92.55% and an accuracy of 89.77% 

with combined features set.  

Recently, several state–of–arts articles have noted their 

performance report for identifying Alzheimer’s victims from 

healthy individuals by utilizing MRI imaging data. Zhang et al. 

[25] set up a multimodal analysis of AD using features 

concatenation of MRI, PET, and CSF. Experiment shows that 

MRI data accomplished an accuracy of 86.2 % while classifying 

AD vs. HC group. By a combination of all introductory features 

results improved and they produce an accuracy of 93.2%. Lama et 

al. [26] utilized the Freesurfer to compute volumetric measures 

and cortical thickness, using these features set with an extreme 

learning machine, they obtained an accuracy of 77.88 %. Westman 

et al. [27] achieved 87% accuracy only with sMRI markers and 

later increased accuracy to 91% by merging MRI data along with 

CSF biomarkers features. Performance comparison of these 

studies among other existing classification algorithms using the 

ADNI database is listed in Table 5. The below table presents that 

the classification efficiency of the proposed technique by utilizing 

features from MR imaging and genetics biomarkers is comparable 

and superior to that of the existing algorithm listed in the research. 

 

Table 5. Performance comparison of suggested algorithm with 

existing literatures to classify AD vs. HC. 

 

IV. CONCLUSION 

 

 In this paper, first, we extracted the morphometric, 
cortical-subcortical features, hippocampal subfield, 
amygdala nuclei volume from sMRI, and genetics features 
from the ADNI core laboratory biomarkers. By combining 
these different kinds of features and then using these 
features set to perform the AD diagnosis, we notice that the 
combination of all features outperforms as compared to the 
individual features alone. Besides we used the sequential 
features selection (SFS) algorithm to obtain the optimum 

Method Modalities Data Classifier ACC SEN SPEC 

Lama et al. 

[26] 
sMRI ADNI ELM 77.88 77.88 68.85 

Westman et al. 
[27] 

sMRI ADNI OPLS 87 83.30 90.10 

Zhang et al. 

[25] 
sMRI ADNI SVM 86.2 86 86.3 

Proposed 

method 

sMRI+ 

APoE ε4 

ADNI MK-SVM 94.33 95.40 96.50 
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features set of all combined features space, which helps to 
achieve the maximum classification accuracy. After all, we 
fed the SFS features into Multi-kernel SVM with a 10-fold 
cross-validation scheme to achieve the classification result, 
which validates the effectiveness of the proposed algorithm 
to improve performance analysis. We also analyzed the 
performance accuracy with the KNN classifier, which 
shows the effectiveness of the present algorithm. 
Furthermore, to improve the potency of this algorithm, we 
plan to include the longitudinal dataset, increasing the 
multimodal dataset and different imaging techniques. 
Ensemble approach and other feature selection methods. 

  

(a) AD vs. HC (b) HC vs. MCI 

 

 

(c) AD vs. MCI  

Fig. 4. ROC curves (AUC) for all features combination. 
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