• Title/Summary/Keyword: combinatorial search

Search Result 111, Processing Time 0.026 seconds

Tool Path Optimization for NC Turret Operation Using Simulated Annealing (풀림모사 기법을 이용한 NC 터릿 작업에서의 공구경로 최적화)

  • 조경호;이건우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1183-1192
    • /
    • 1993
  • Since the punching time is strongly related to the productivity in sheet metal stamping, there have been a lot of efforts to obtain the optimal tool path. However, most of the conventional efforts have the basic limitations to provide the global optimal solution because of the inherent difficulties of the NP hard combinatorial optimization problem. The existing methods search the optimal tool path with limiting tool changes to the minimal number, which proves not to be a global optimal solution. In this work, the turret rotation time is also considered in addition to the bed translation time of the NCT machine, and the total punching time is minimized by the simulated annealing algorithm. Some manufacturing constraints in punching sequences such as punching priority constraint and punching accuracy constraint are incorporated automatically in optimization, while several user-interactions to edit the final tool path are usually required in commercial systems.

ISO Coordination of Generator Maintenance Scheduling in Competitive Electricity Markets using Simulated Annealing

  • Han, Seok-Man;Chung, Koo-Hyung;Kim, Balho-H.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.431-438
    • /
    • 2011
  • To ensure that equipment outages do not directly impact the reliability of the ISO-controlled grid, market participants request permission and receive approval for planned outages from the independent system operator (ISO) in competitive electricity markets. In the face of major generation outages, the ISO will make a critical decision as regards the scheduling of the essential maintenance for myriads of generating units over a fixed planning horizon in accordance with security and adequacy assessments. Mainly, we are concerned with a fundamental framework for ISO's maintenance coordination in order to determine precedence of conflicting outages. Simulated annealing, a powerful, general-purpose optimization methodology suitable for real combinatorial search problems, is used. Generally, the ISO will put forward its best effort to adjust individual generator maintenance schedules according to the time preferences of each power generator (GENCO) by taking advantage of several factors such as installed capacity and relative weightings assigned to the GENCOs. Thus, computer testing on a four-GENCO model is conducted to demonstrate the effectiveness of the proposed method and the applicability of the solution scheme to large-scale maintenance scheduling coordination problems.

A study on the Production and distribution planning using a genetic algorithm (유전 알고리즘을 이용한 생산 및 분배 계획)

  • 정성원;장양자;박진우
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.253-256
    • /
    • 2001
  • Today's rapid development in the computer and network technology makes the environment which enables the companies to consider their decisions on the wide point of view and enables the software vendors to make the software packages to help these decisions. To make these software packages, many algorithms should be developed. The production and distribution planning problem belongs to those problems that industry manufacturers daily face in organizing their overall production plan. However, this combinatorial optimization problem can not be solved optimally in a reasonable time when large instances are considered. This legitimates the search for heuristic techniques. As one of these heuristic techniques, genetic algorithm has been considered in many researches. A standard genetic algorithm is a problem solving method that apply the rules of reproduction, gene crossover, and mutation to these pseudo-organisms so those organisms can Pass beneficial and survival-enhancing traits to new generation. This standard genetic algorithm should not be applied to this problem directly because when we represent the chromosome of this problem, there may exist high epitasis between genes. So in this paper, we proposed the hybrid genetic algorithm which turns out to better result than standard genetic algorithms

  • PDF

Enhanced Particle Swarm Optimization for Short-Term Non-Convex Economic Scheduling of Hydrothermal Energy Systems

  • Jadoun, Vinay Kumar;Gupta, Nikhil;Niazi, K. R.;Swarnkar, Anil
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1940-1949
    • /
    • 2015
  • This paper presents an Enhanced Particle Swarm Optimization (EPSO) to solve short-term hydrothermal scheduling (STHS) problem with non-convex fuel cost function and a variety of operational constraints related to hydro and thermal units. The operators of the conventional PSO are dynamically controlled using exponential functions for better exploration and exploitation of the search space. The overall methodology efficiently regulates the velocity of particles during their flight and results in substantial improvement in the conventional PSO. The effectiveness of the proposed method has been tested for STHS of two standard test generating systems while considering several operational constraints like system power balance constraints, power generation limit constraints, reservoir storage volume limit constraints, water discharge rate limit constraints, water dynamic balance constraints, initial and end reservoir storage volume limit constraints, valve-point loading effect, etc. The application results show that the proposed EPSO method is capable to solve the hard combinatorial constraint optimization problems very efficiently.

Optimal Design of Location Management Using Particle Swarm Optimization (파티클군집최적화 방법을 적용한 위치관리시스템 최적 설계)

  • Byeon, Ji-Hwan;Kim, Sung-Soo;Jang, Si-Hwan;Kim, Yeon-Soo
    • Korean Management Science Review
    • /
    • v.29 no.1
    • /
    • pp.143-152
    • /
    • 2012
  • Location area planning (LAP) problem is to partition the cellular/mobile network into location areas with the objective of minimizing the total cost in location management. The minimum cost has two components namely location update cost and searching cost. Location update cost is incurred when the user changes itself from one location area to another in the network. The searching cost incurred when a call arrives, the search is done only in the location area to find the user. Hence, it is important to find a compromise between the location update and paging operations such that the cost of mobile terminal location tracking cost is a minimum. The complete mobile network is divided into location areas. Each location area consists of a group of cells. This partitioning problem is a difficult combinatorial optimization problem. In this paper, we use particle swarm optimization (PSO) to obtain the best/optimal group of cells for 16, 36, 49, and 64 cells network. Experimental studies illustrate that PSO is more efficient and surpasses those of precious studies for these benchmarking problems.

The Effect of Multiagent Interaction Strategy on the Performance of Ant Model (개미 모델 성능에서 다중 에이전트 상호작용 전략의 효과)

  • Lee Seung-Gwan
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.3
    • /
    • pp.193-199
    • /
    • 2005
  • One of the important fields for heuristics algorithm is how to balance between Intensificationand Diversification. Ant Colony System(ACS) is a new meta heuristics algorithm to solve hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was first proposed for tackling the well known Traveling Salesman Problem(TSP). In this paper, we propose Multi Colony Interaction Ant Model that achieves positive negative interaction through elite strategy divided by intensification strategy and diversification strategy to improve the performance of original ACS. And, we apply multi colony interaction ant model by this proposed elite strategy to TSP and compares with original ACS method for the performance.

  • PDF

New Usage of SOM for Genetic Algorithm (유전 알고리즘에서의 자기 조직화 신경망의 활용)

  • Kim, Jung-Hwan;Moon, Byung-Ro
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.4
    • /
    • pp.440-448
    • /
    • 2006
  • Self-Organizing Map (SOM) is an unsupervised learning neural network and it is used for preserving the structural relationships in the data without prior knowledge. SOM has been applied in the study of complex problems such as vector quantization, combinatorial optimization, and pattern recognition. This paper proposes a new usage of SOM as a tool for schema transformation hoping to achieve more efficient genetic process. Every offspring is transformed into an isomorphic neural network with more desirable shape for genetic search. This helps genes with strong epistasis to stay close together in the chromosome. Experimental results showed considerable improvement over previous results.

An Application of advanced Dijkstra algorithm and Fuzzy rule to search a restoration topology in Distribution Systems (배전계통 사고복구 구성탐색을 위한 개선된 다익스트라 알고리즘과 퍼지규칙의 적용)

  • Kim, Hoon;Jeon, Young-Jae;Kim, Jae-Chul;Choi, Do-Hyuk;Chung, Yong-Chul;Choo, Dong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.537-540
    • /
    • 2000
  • The Distribution System consist of many tie-line switches and sectionalizing switches, operated a radial type. When an outage occurs in Distribution System, outage areas are isolated by system switches, has to restored as soon as possible. At this time, system operator have to get a information about network topology for service restoration of outage areas. Therefore, the searching result of restorative topology has to fast computation time and reliable result topology for to restore a electric service to outage areas, equal to optimal switching operation problem. So, the problem can be defined as combinatorial optimization problem. The service restoration problem is so important problem which have outage area minimization, outage loss minimization. Many researcher is applying to the service restoration problem with various techniques. In this paper, advanced Dijkstra algorithm is applied to searching a restoration topology, is so efficient to searching a shortest path in graph type network. Additionally, fuzzy rules and operator are applied to overcome a fuzziness of correlation with input data. The present technique has superior results which are fast computation time and searching results than previous researches, demonstrated by example distribution model system which has 3 feeders, 26 buses. For a application capability to real distribution system, additionally demonstrated by real distribution system of KEPCO(Korea Electric Power Corporation) which has 8 feeders and 140 buses.

  • PDF

A Study on Wireless LAN Topology Configuration for Enhancing Indoor Location-awareness and Network Performance (실내 위치 인식 및 네트워크 성능 향상을 고려한 무선 랜 토폴로지 구성 방안에 관한 연구)

  • Kim, Taehoon;Tak, Sungwoo
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.4
    • /
    • pp.472-482
    • /
    • 2013
  • This paper proposes a wireless LAN topology configuration method for enhancing indoor location-awareness and improving network performance simultaneously. We first develop four objective functions that yield objective goals significant to the optimal design of a wireless LAN topology in terms of location-awareness accuracy and network performance factors. Then, we develop metaheuristic algorithms such as simulated annealing, tabu search, and genetic algorithm that examine the proposed objective functions and generate a near-optimal solution for a given objective function. Finally, four objective functions and metaheuristic algorithms developed in this paper are exploited to evaluate and measure the performance of the proposed wireless LAN topology configuration method.

Application of Nonlinear Integer Programming for Vibration Optimization of Ship Structure (선박 구조물의 진동 최적화를 위한 비선형 정수 계획법의 적용)

  • Kong, Young-Mo;Choi, Su-Hyun;Song, Jin-Dae;Yang, Bo-Suk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.654-665
    • /
    • 2005
  • In this paper, we present a non-linear integer programming by genetic algorithm (GA) for available sizes of stiffener or thickness of plate in a job site. GA can rapidly search for the approximate global optimum under complicated design environment such as ship. Meanwhile it can handle the optimization problem involving discrete design variable. However, there are many parameters have to be set for GA, which greatly affect the accuracy and calculation time of optimum solution. The setting process is hard for users, and there are no rules to decide these parameters. In order to overcome these demerits, the optimization for these parameters has been also conducted using GA itself. Also it is proved that the parameters are optimal values by the trial function. Finally, we applied this method to compass deck of ship where the vibration problem is frequently occurred to verify the validity and usefulness of nonlinear integer programming.