• Title/Summary/Keyword: combination weights method

Search Result 67, Processing Time 0.03 seconds

3D face recognition based on radial basis function network (방사 기저 함수 신경망을 이용한 3차원 얼굴인식)

  • Yang, Uk-Il;Sohn, Kwang-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.82-92
    • /
    • 2007
  • This paper describes a novel global shape (GS) feature based on radial basis function network (RBFN) and the extraction method of the proposed feature for 3D face recognition. RBFN is the weighted sum of RBfs, it well present the non-linearity of a facial shape using the linear combination of RBFs. It is the proposed facial feature that the weights of RBFN learned by the horizontal profiles of a face. RBFN based feature expresses the locality of the facial shape even if it is GS feature, and it reduces the feature complexity like existing global methods. And it also get the smoothing effect of the facial shape. Through the experiments, we get 94.7% using the proposed feature and hidden markov model (HMM) to match the features for 100 gallery set with those for 300 test set.

Improvement of Atmospheric Dispersion Model Performance by Pretreatment of Dispersion Coefficients (분산계수의 전처리에 의한 대기분산모델 성능의 개선)

  • Park, Ok-Hyun;Kim, Gyung-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.4
    • /
    • pp.449-456
    • /
    • 2007
  • Dispersion coefficient preprocessing schemes have been examined to improve plume dispersion model performance in complex coastal areas. The performances of various schemes for constructing the sigma correction order were evaluated through estimations of statistical measures, such as bias, gross error, R, FB, NMSE, within FAC2, MG, VG, IOA, UAPC and MRE. This was undertaken for the results of dispersion modeling, which applied each scheme. Environmental factors such as sampling time, surface roughness, plume rising, plume height and terrain rolling were considered in this study. Gaussian plume dispersion model was used to calculate 1 hr $SO_2$ concentration 4 km downwind from a power plant in Boryeung coastal area. Here, measured data for January to December of 2002 were obtained so that modelling results could be compared. To compare the performances between various schemes, integrated scores of statistical measures were obtained by giving weights for each measure and then summing each score. This was done because each statistical measure has its own function and criteria; as a result, no measure can be taken as a sole index indicative of the performance level for each modeling scheme. The best preprocessing scheme was discerned using the step-wise method. The most significant factor influencing the magnitude of real dispersion coefficients appeared to be sampling time. A second significant factor appeared to be surface roughness, with the rolling terrain being the least significant for elevated sources in a gently rolling terrain. The best sequence of correcting the sigma from P-G scheme was found to be the combination of (1) sampling time, (2) surface roughness, (3) plume rising, (4) plume height, and (5) terrain rolling.

Fuzzy Neural System Modeling using Fuzzy Entropy (퍼지 엔트로피를 이용한 퍼지 뉴럴 시스템 모델링)

  • 박인규
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.2
    • /
    • pp.201-208
    • /
    • 2000
  • In this paper We describe an algorithm which is devised for 4he partition o# the input space and the generation of fuzzy rules by the fuzzy entropy and tested with the time series prediction problem using Mackey-Glass chaotic time series. This method divides the input space into several fuzzy regions and assigns a degree of each of the generated rules for the partitioned subspaces from the given data using the Shannon function and fuzzy entropy function generating the optimal knowledge base without the irrelevant rules. In this scheme the basic idea of the fuzzy neural network is to realize the fuzzy rules base and the process of reasoning by neural network and to make the corresponding parameters of the fuzzy control rules be adapted by the steepest descent algorithm. The Proposed algorithm has been naturally derived by means of the synergistic combination of the approximative approach and the descriptive approach. Each output of the rule's consequences has expressed with its connection weights in order to minimize the system parameters and reduce its complexities.

  • PDF

Design of a Neuro-Fuzzy System Using Union-Based Rule Antecedent (합 기반의 전건부를 가지는 뉴로-퍼지 시스템 설계)

  • Chang-Wook Han;Don-Kyu Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.13-17
    • /
    • 2024
  • In this paper, union-based rule antecedent neuro-fuzzy controller, which can guarantee a parsimonious knowledge base with reduced number of rules, is proposed. The proposed neuro-fuzzy controller allows union operation of input fuzzy sets in the antecedents to cover bigger input domain compared with the complete structure rule which consists of AND combination of all input variables in its premise. To construct the proposed neuro-fuzzy controller, we consider the multiple-term unified logic processor (MULP) which consists of OR and AND fuzzy neurons. The fuzzy neurons exhibit learning abilities as they come with a collection of adjustable connection weights. In the development stage, the genetic algorithm (GA) constructs a Boolean skeleton of the proposed neuro-fuzzy controller, while the stochastic reinforcement learning refines the binary connections of the GA-optimized controller for further improvement of the performance index. An inverted pendulum system is considered to verify the effectiveness of the proposed method by simulation and experiment.

Forecasting hierarchical time series for foodborne disease outbreaks (식중독 발생 건수에 대한 계층 시계열 예측)

  • In-Kwon Yeo
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.4
    • /
    • pp.499 -508
    • /
    • 2024
  • In this paper, we investigate hierarchical time series forecasting that adhere to a hierarchical structure when deriving predicted values by analyzing segmented data as well as aggregated datasets. The occurrences of food poisoning by a specific pathogen are analyzed using zero-inflated Poisson regression models and negative binomial regression models. The occurrences of major, miscellaneous, and overall food poisoning are analyzed using Poisson regression models and negative binomial regression models. For hierarchical time series forecasting, the MinT estimation proposed by Wickramasuriya et al. (2019) is employed. Negative predicted values resulting from hierarchical adjustments are adjusted to zero, and weights are multiplied to the remaining lowest-level variables to satisfy the hierarchical structure. Empirical analysis revealed that there is little difference between hierarchical and non-hierarchical adjustments in predictions based on pathogens. However, hierarchical adjustments generally yield superior results for predictions concerning major, miscellaneous, and overall occurrences. Without hierarchical adjustment, instances may occur where the predicted frequencies of the lowest-level variables exceed that of major or miscellaneous occurrences. However, the proposed method enables the acquisition of predictions that adhere to the hierarchical structure.

Trends and Future Direction of the Clinical Decision Support System in Traditional Korean Medicine

  • Sung, Hyung-Kyung;Jung, Boyung;Kim, Kyeong Han;Sung, Soo-Hyun;Sung, Angela-Dong-Min;Park, Jang-Kyung
    • Journal of Pharmacopuncture
    • /
    • v.22 no.4
    • /
    • pp.260-268
    • /
    • 2019
  • Objectives: The Clinical Decision Support System (CDSS), which analyzes and uses electronic health records (EHR) for medical care, pursues patient-centered medical care. It is necessary to establish the CDSS in Korean medical services for objectification and standardization. For this purpose, analyses were performed on the points to be followed for CDSS implementation with a focus on herbal medicine prescription. Methods: To establish the CDSS in the prescription of Traditional Korean Medicine, the current prescription practices of Traditional Korean Medicine doctors were analyzed. We also analyzed whether the prescription support function of the electronic chart was implemented. A questionnaire survey was conducted querying Traditional Korean Medicine doctors working at Traditional Korean Medicine clinics and hospitals, to investigate their desired CDSS functions, and their perceived effects on herbal medicine prescription. The implementation of the CDSS among the audit software developers used by the Korean medical doctors was examined. Results: On average, 41.2% of Traditional Korean Medicine doctors working in Traditional Korean Medicine clinics manipulated 1 to 4 herbs, and 31.2% adjusted 4 to 7 herbs. On average, 52.5% of Traditional Korean Medicine doctors working in Traditional Korean Medicine hospitals adjusted 1 to 4 herbs, and 35.5% adjusted 4 to 7 herbs. Questioning the desired prescription support function in the electronic medical record system, the Traditional Korean Medicine doctors working at Korean medicine clinics desired information on 'medicine name, meridian entry, flavor of medicinals, nature of medicinals, efficacy,' 'herb combination information' and 'search engine by efficacy of prescription.' The doctors also desired compounding contraindications (eighteen antagonisms, nineteen incompatibilities) and other contraindicatory prescriptions, 'medicine information' and 'prescription analysis information through basic constitution analyses.' The implementation of prescription support function varied by clinics and hospitals. Conclusion: In order to implement and utilize the CDSS in a medical service, clinical information must be generated and managed in a standardized form. For this purpose, standardization of terminology, coding of prescriptions using a combination of herbal medicines, and unification such as the preparation method and the weights and measures should be integrated.

Multi-spectral Flash Imaging using Region-based Weight Map (영역기반 가중치 맵을 이용한 멀티스팩트럼 플래시 영상 획득)

  • Choi, Bong-Seok;Kim, Dae-Chul;Lee, Cheol-Hee;Ha, Yeong-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.127-135
    • /
    • 2013
  • In order to acquire images in low-light environments, it is usually necessary to adopt long exposure times or resort to flash lights. However, flashes often induce color distortion, cause the red-eye effect and can be disturbing to subjects. On the other hand, long-exposure shots are susceptible to subject-motion, as well as motion-blur due to camera shake when performed hand-held. A recently introduced technique to overcome the limitations of traditional low-light photography is that of multi-spectral flash. Multi-spectral flash images are a combination of UV/IR and visible spectrum information. The general idea is that of retrieving details from the UV/IR spectrum and color from the visible spectrum. However, multi-spectral flash images themselves are subject to color distortion and noise. This works presents a method to compute multi-spectral flash images so that noise can be reduced and color accuracy improved. The proposed approach is a previously seen optimization method, improved by the introduction of a weight map used to discriminate uniform regions from detail regions. The weight map is generated by applying canny edge operator and it is applied to the optimization process for discriminating the weights in uniform region and edge. Accordingly, the weight of color information is increased in the uniform region and the detail region of weight is decreased in detail region. Therefore, the proposed method can be enhancing color reproduction and removing artifacts. The performance of the proposed method has been objectively evaluated using long-exposure shots as reference.

Automated Areal Feature Matching in Different Spatial Data-sets (이종의 공간 데이터 셋의 면 객체 자동 매칭 방법)

  • Kim, Ji Young;Lee, Jae Bin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.89-98
    • /
    • 2016
  • In this paper, we proposed an automated areal feature matching method based on geometric similarity without user intervention and is applied into areal features of many-to-many relation, for confusion of spatial data-sets of different scale and updating cycle. Firstly, areal feature(node) that a value of inclusion function is more than 0.4 was connected as an edge in adjacency matrix and candidate corresponding areal features included many-to-many relation was identified by multiplication of adjacency matrix. For geometrical matching, these multiple candidates corresponding areal features were transformed into an aggregated polygon as a convex hull generated by a curve-fitting algorithm. Secondly, we defined matching criteria to measure geometrical quality, and these criteria were changed into normalized values, similarity, by similarity function. Next, shape similarity is defined as a weighted linear combination of these similarities and weights which are calculated by Criteria Importance Through Intercriteria Correlation(CRITIC) method. Finally, in training data, we identified Equal Error Rate(EER) which is trade-off value in a plot of precision versus recall for all threshold values(PR curve) as a threshold and decided if these candidate pairs are corresponding pairs or not. To the result of applying the proposed method in a digital topographic map and a base map of address system(KAIS), we confirmed that some many-to-many areal features were mis-detected in visual evaluation and precision, recall and F-Measure was highly 0.951, 0.906, 0.928, respectively in statistical evaluation. These means that accuracy of the automated matching between different spatial data-sets by the proposed method is highly. However, we should do a research on an inclusion function and a detail matching criterion to exactly quantify many-to-many areal features in future.

A Hybrid Knowledge Representation Method for Pedagogical Content Knowledge (교수내용지식을 위한 하이브리드 지식 표현 기법)

  • Kim, Yong-Beom;Oh, Pill-Wo;Kim, Yung-Sik
    • Korean Journal of Cognitive Science
    • /
    • v.16 no.4
    • /
    • pp.369-386
    • /
    • 2005
  • Although Intelligent Tutoring System(ITS) offers individualized learning environment that overcome limited function of existent CAI, and consider many learners' variable, there is little development to be using at the sites of schools because of inefficiency of investment and absence of pedagogical content knowledge representation techniques. To solve these problem, we should study a method, which represents knowledge for ITS, and which reuses knowledge base. On the pedagogical content knowledge, the knowledge in education differs from knowledge in a general sense. In this paper, we shall primarily address the multi-complex structure of knowledge and explanation of learning vein using multi-complex structure. Multi-Complex, which is organized into nodes, clusters and uses by knowledge base. In addition, it grows a adaptive knowledge base by self-learning. Therefore, in this paper, we propose the 'Extended Neural Logic Network(X-Neuronet)', which is based on Neural Logic Network with logical inference and topological inflexibility in cognition structure, and includes pedagogical content knowledge and object-oriented conception, verify validity. X-Neuronet defines that a knowledge is directive combination with inertia and weights, and offers basic conceptions for expression, logic operator for operation and processing, node value and connection weight, propagation rule, learning algorithm.

  • PDF

Efficient Feature Selection Based Near Real-Time Hybrid Intrusion Detection System (근 실시간 조건을 달성하기 위한 효과적 속성 선택 기법 기반의 고성능 하이브리드 침입 탐지 시스템)

  • Lee, Woosol;Oh, Sangyoon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.12
    • /
    • pp.471-480
    • /
    • 2016
  • Recently, the damage of cyber attack toward infra-system, national defence and security system is gradually increasing. In this situation, military recognizes the importance of cyber warfare, and they establish a cyber system in preparation, regardless of the existence of threaten. Thus, the study of Intrusion Detection System(IDS) that plays an important role in network defence system is required. IDS is divided into misuse and anomaly detection methods. Recent studies attempt to combine those two methods to maximize advantagesand to minimize disadvantages both of misuse and anomaly. The combination is called Hybrid IDS. Previous studies would not be inappropriate for near real-time network environments because they have computational complexity problems. It leads to the need of the study considering the structure of IDS that have high detection rate and low computational cost. In this paper, we proposed a Hybrid IDS which combines C4.5 decision tree(misuse detection method) and Weighted K-means algorithm (anomaly detection method) hierarchically. It can detect malicious network packets effectively with low complexity by applying mutual information and genetic algorithm based efficient feature selection technique. Also we construct upgraded the the hierarchical structure of IDS reusing feature weights in anomaly detection section. It is validated that proposed Hybrid IDS ensures high detection accuracy (98.68%) and performance at experiment section.