• 제목/요약/키워드: column-beam connection

검색결과 499건 처리시간 0.027초

A Simplified Steel Beam-To-Column Connection Modelling Approach and Influence of Connection Ductility on Frame Behaviour in Fire

  • Shi, Ruoxi;Huang, Shan-Shan;Davison, Buick
    • 국제초고층학회논문집
    • /
    • 제7권4호
    • /
    • pp.343-362
    • /
    • 2018
  • A simplified spring connection modelling approach for steel flush endplate beam-to-column connections in fire has been developed to enable realistic behaviour of connections to be incorporated into full-scale frame analyses at elevated temperature. Due to its simplicity and reliability, the proposed approach permits full-scale high-temperature frame analysis to be conducted without high computational cost. The proposed simplified spring connection modelling approach has been used to investigate the influence of connection ductility (both axial and rotational) on frame behaviour in fire. 2D steel and 3D composite frames with a range of beam spans were modelled to aid the understanding of the differences in frame response in fire where the beam-to-column connections have different axial and rotational ductility assumptions. The modelling results highlight that adopting the conventional rigid or pinned connection assumptions does not permit the axial forces acting on the connections to be accurately predicted, since the axial ductility of the connection is completely neglected when the rotational ductility is either fully restrained or free. By accounting for realistic axial and rotational ductilities of beam-to-column connections, the frame response in fire can be predicted more accurately, which is advantageous in performance-based structural fire engineering design.

Bolted end plate connections for steel reinforced concrete composite structures

  • Li, Xian;Wu, Yuntian;Mao, Weifeng;Xiao, Yan;Anderson, J.C.;Guo, Yurong
    • Structural Engineering and Mechanics
    • /
    • 제24권3호
    • /
    • pp.291-306
    • /
    • 2006
  • In order to improve the constructability and meanwhile ensure excellent seismic behavior, several innovative composite connection details were conceived and studied by the authors. This paper reports experimental results and observations on seismic behavior of steel beam bolted to reinforced concrete column connections (bolted RCS or BRCS). The proposed composite connection details involve post tensioning the end plates of the steel beams to the reinforced concrete or precast concrete columns using high-strength steel rods. A rational design procedure was proposed to assure a ductile behavior of the composite structure. Strut-and-tie model analysis indicates that a bolted composite connection has a favorable stress transfer mechanism. The excellent capacity and behavior were then validated through five full-scale beam to column connection model tests.

각형강관 기둥을 가진 철골모멘트 접합부의 변형능력 (Deformation Capacity of Steel Moment Connections with RHS Column)

  • 김영주;오상훈;유홍식
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.249-258
    • /
    • 2006
  • In this paper, deformation capacity of steel moment connections with RHS column was investigated. Initially, non-linear finite element analysis of five bate steel beam models was conducted. The models were designed to have different detail at their beam-to-column connection, so that the flexural moment capacity was different respectively. Analysis results showed 4hat the moment transfer efficiency of the analytical model with RHS-column was poor when comparing to model with WF(Wide flnage)-column due to out-of-plane deformation of the RHS-column flange. The presence of scallop and thin plate of RHS column was also a reason of the decrease of moment transfer efficiency, which would result in a potential fracture of tile steel beam-to-column connections. Further test on beam-to-column connections with RHS column revealed that the moment transfer efficiency of a beam web decreased due to the out-of-plane deformation of column flange, which led to premature failure of the connection.

  • PDF

CFT기둥과 H-형강보의 볼트 접합부에 관한 실험적 연구 (An Experimental study on the Bolted Moment Connection between H-Beam and CFT Column)

  • 박순규;노환근
    • 한국강구조학회 논문집
    • /
    • 제10권4호통권37호
    • /
    • pp.789-799
    • /
    • 1998
  • 본 연구의 목적은 CFT-기둥과H-형강보의 볼트를 이용한 접합부의 형식을 제안하는 데 있다. 본 연구에서는 직선형, 굽힘형, U자형, 기성제품 고장력 볼트를 이용한 아홉가지 형식의 접합부를 제안하였다. 이 아홉가지의 접합부 형식에 대하여 단순 인장 실험을 수행하였으며, 이 실험 결과에 의해 성능이 우수한 형태를 선정하여 단순 휨 실험을 수행하였다. 그리고 단순 휨 실험을 통해 보-기둥 접합부의 구조적인 거동을 비교 분석하였다. 단순 휨 실험의 분석 결과, 휨 접합부의 구조성능은 상당히 우수한 것으로 나타났으나 시공시 해결되어야 할 사항들이 남아 있는 것으로 나타났다.

  • PDF

콘크리트피복 원형충전강관 기둥-강재보 접합부에 대한 반복하중실험 (Cyclic Loading Test for Composite Beam-Column Joints using Circular CEFT Columns)

  • 이호준;박홍근;최인락
    • 한국강구조학회 논문집
    • /
    • 제29권6호
    • /
    • pp.411-422
    • /
    • 2017
  • 본 연구에서는 콘크리트피복 원형충전강관 기둥을 적용한 합성구조 접합부의 거동특성과 내진성능을 평가하기 위하여, 기둥-플랜지 접합부에 대한 인장실험과 보-기둥 접합부에 대한 반복하중 실험을 수행하였다. 기둥-플랜지 인장실험은 피복콘크리트의 유무와 플랜지 폭, 인장철근 보강을 변수로 하여 5개의 실험체에 대하여 하중재하능력과 파괴모드를 분석하였다. 실험결과, 접합부에서의 플랜지 단부 폭을 200mm에서 350mm로 증가시킬 경우 연결부의 강도 및 강성이 각각 1.61배와 1.56배가 증가했고, 인장철근을 보강할 경우 추가적으로 강성과 강도가 각각 1.35배와 1.92배 증가했다. 접합부 반복하중 실험에서는 접합 상세를 변수로 3개의 외부접합부 실험체를 구성했다. 접합부 보강상세로는 인장철근 보강과 강관의 두께, 수직강판 보강을 고려하였다. 모든 접합부 실험체는 보에서 뚜렷한 휨항복이 발생하였으며 접합부의 손상은 제한적이었다. 특히, 강재보가 강관에 직접 용접되는 경우 보의 웨브를 통해서도 하중이 전달되기 때문에, 플랜지 인장실험 결과보다 보수적인 설계가 가능하며, 접합부 강관 두께를 증가시키거나 수직강판으로 보강한 경우에는 추가적으로 패널존의 전단내력이 증가하는 것으로 나타났다.

Friction-based beam-to-column connection for low-damage RC frames with hybrid trussed beams

  • Colajanni, Piero;Pagnotta, Salvatore
    • Steel and Composite Structures
    • /
    • 제45권2호
    • /
    • pp.231-248
    • /
    • 2022
  • Hybrid Steel-Trussed Concrete Beam (HSTCB) is structural typology suitable for light industrialization. HSTCBs usually cover long span with small depths, which lead to significant amount of longitudinal rebars. The latter make beam-column joints more prone to damage due to earthquake-induced cyclic actions. This phenomenon can be avoided using friction-based BCCs. Friction devices at Beam-to-Column Connections (BCCs) have become promising solutions to reduce the damage experienced by structural members during severe earthquakes. Few solutions have been developed for cast-in-place Reinforced Concrete (RC) and steel-concrete composite Moment Resisting Frames (MRFs), because of the difficulty of designing cost-effective damage-proof connections. This paper proposes a friction-based BCC for RC MRFs made with HSTCBs. Firstly, the proposed connection is described, and its innovative characteristics are emphasized. Secondly, the design method of the connection is outlined. A detailed 3D FE model representative of a beam-column joint fitted with the proposed connection is developed. Several monotonic and cyclic analyses are performed, investigating different design moment values. Lastly, the numerical results are discussed, which demonstrate the efficiency of the proposed solution in preventing damage to RC members, and in ensuring satisfactory dissipative capacity.

외측 다이아프램을 사용한 현장 용접형 각형강관기둥-H형강보 접합부의 이력거동 (Seismic Behavior of H shaped Beam to Square Column Connection with Outer Diaphragm Using Field Welding)

  • 서성연;정진안;최성모;김성용
    • 한국강구조학회 논문집
    • /
    • 제17권4호통권77호
    • /
    • pp.459-467
    • /
    • 2005
  • 본 연구는 외측 다이아프램을 사용하여 현장용접에 의한 각형강관 기둥과 H형강 보를 접합법의 개발에 목적을 둔다. 본 연구에서 제안하고 있는 것은 현장용접을 이용한 외측 보강재에 의한 특정 타입의 기둥-보 접합부이다. 이 접합부의 구조적 거동은 실험적으로 검토되었다. 두 가지 하중 유형 실험은 세부적으로 주어진 실험 변수 하에 수행되었다. 먼저 제안된 접합부의 기본적인 특성을 연구하기 위하여 양단부에서 보를 핀 지지한 후 중앙점에서 기둥을 가력한 대칭 하중재하 실험을 기술하였다. 두 번째는 이 접합부의 구조적 성능을 연구하기 위하여 기둥의 양단은 단순지지로 하고 H형강 보 양단에서 하중을 제어하는 역대칭 하중재하 실험을 기술하였다. 실험 결과, 본 논문에서 제안한 외측 보강재 타입의 접합부는 정량적 평가 방법이라는 것을 알 수 있었다.

컬럼-트리 형식 철골모멘트 접합부의 모델링 변수제안 (Modeling Parameters for Column-Tree Type Steel Beam-Column Connections)

  • 안희태;김태완;유은종
    • 한국지진공학회논문집
    • /
    • 제27권1호
    • /
    • pp.59-68
    • /
    • 2023
  • The column-tree type steel beam-column connections are commonly used in East Asian countries, including Korea. The welding detail between the stub beam and column is similar to the WUF-W connection; thus, it can be expected to have sufficient seismic performance. However, previous experimental studies indicate that premature slip occurs at the friction joints between the stub and link beams. In this study, for the accurate seismic performance evaluation of column-tree type moment connections, a moment-slip model was proposed by investigating the previous test results. As a result, it was found that the initial slip occurred at about 25% of the design slip moment strength, and the amount of slip was about 0.15%. Also, by comparing the analysis results from models with and without the slip element, the influence of slip on the performance of overall beam-column connections was examined. As the panel zone became weaker, the contribution of slip on overall deformation became greater, and the shear demand for the panel zone was reduced.

Parametrical study of the behavior of exterior unreinforced concrete beam-column joints through numerical modeling

  • Silva, Matheus F.A.;Haach, Vladimir G.
    • Computers and Concrete
    • /
    • 제18권2호
    • /
    • pp.215-233
    • /
    • 2016
  • Exterior beam-column joints are structural elements that ensure connection between beams and columns. The joint strength is generally assumed to be governed by the structural element of lowest load capacity (beam or column), however, the joint may be the weakest link. The joint shear behavior is still not well understood due to the influence of several variables, such as geometry of the connection, stress level in the column, concrete strength and longitudinal beam reinforcement. A parametrical study based only on experiments would be impracticable and not necessarily exposes the failure mechanisms. This paper reports on a set of numerical simulations conducted in DIANA$^{(R)}$ software for the investigation of the shear strength of exterior joints. The geometry of the joints and stress level on the column are the variables evaluated. Results have led to empirical expressions that provide the shear strength of unreinforced exterior beam-column joints.

2400MPa 긴장재가 적용된 포스트텐션 프리캐스트 콘크리트 보-기둥 접합부의 반복가력실험 (Reversed Cyclic Loading Test of Post-Tensioned Precast Concrete Beam-Column Connections with 2400MPa Prestressing Strands)

  • 황진하;최승호;이득행;김강수;우운택
    • 대한건축학회논문집:구조계
    • /
    • 제33권12호
    • /
    • pp.45-52
    • /
    • 2017
  • The precast concrete (PC) method has many advantages in fast construction, quality control, etc. In domestic construction market, however, its application has been quite limited because of the concerns about structural integrity and seismic performances due to the discrete connections between precast concrete members. By applying the post-tensioning method, the precast beam-column connection can be well tightened, allowing improved structural integrity, and proper seismic performances can be also achieved. In this study, reversed cyclic tests have been conducted on the beam-column connection specimens, where the test variables included the compressive strength of grouting mortar and the tensile strengths of prestressing strands, based on which their seismic performances have been examined in detail. The post-tensioned PC beam-column connections showed good seismic performances comparable to that of the monolithic reinforced concrete connection specimen. When 2400 MPa prestressing strands are applied to the beam-column connection, it is preferable to adjust the prestress level similar to that applied for the 1860 MPa prestressing strands to avoid premature local crushing failures at the beam-column connections.