• Title/Summary/Keyword: column storage

Search Result 169, Processing Time 0.025 seconds

WATER ACTIVITY AND PIGMENT DEGRADATION IN DRIED LAVERS STORED AT ROOM TEMPERATURE (건해태(김) 저장시의 수분활성과 색소분해반응)

  • LEE Kang-Ho;CHOI Ho-Yeon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.6 no.1_2
    • /
    • pp.27-36
    • /
    • 1973
  • The effect of water activity on degradation of pigments in dried lavers, Porphyra tenera Kjellm. was examined when stored at room temperature for fifty days. Chlorophyll pigment was extracted with methanol-petroleum ether mixture solvent(2:1 v/v), partitioned in ether, and analysed spectrophotometrically at 662 nm as chlorophyll a. The degradation products of chlorophyll were isolated on sugar-starch column(85:15 w/w) with n-propanol-petroleum ether solution(1:200 v/v) as a developing solvent. The isolated green colored zones were analysed individually at the wavelengths of 650, 662, and 667 nm as allomerized product, chlorophyll a retained, and pheophytin formed respectively. Carotenoida were also extracted with the methanol mixture solvent, partitioned in ether, and finally redissolved in acetone after the evaporation of ether in a rotary vacuum evaporator. The total carotenoid content was measured as lutein at 450 nm. From the results, it is noted that the rate of chlorophyll degradation reached a minimum at 0.11 to 0.33 water activity while progressively increased at higher moisture levels resulting in rapid conversion of chlorophyll to pheophytin. At lower activity, autocatalysed oxidizing reaction like allomerization seemed prevailing the acid catalysed conversion reaction. The loss of carotenoid pigment was also greatly reduced at the range of 0.22 to 0.34 water activity with much faster oxidative degradation at both higher and extremely lower moisture levels. These two moisture levels indicated above at which the both pigments exhibited maximum stability are considerably higher than the BET monolayer moisture which appeared 7.91 percent on dry basis at Aw=0.10 calculated from the adsorption isothermal data of the sample at $20^{\circ}C$. The rate of pigment loss in heat treated samples at 60 and $100^{\circ}C$ for 2 hours prior to storage somewhat decreased, particularly at higher moisture levels although the final pigment retention was not much stabilized.

  • PDF

Analysis on the Substrate Specificity and Stability of Hansenula polymorpha Alcohol Oxidase (Hansenula polymorpha 알코올 산화효소의 기질특이성 및 안정성 분석)

  • Jegal, Hyang;Cho, Hyun-Young;Kim, Eun-Ho;Kong, Kwang-Hoon
    • Analytical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.37-44
    • /
    • 2004
  • An alcohol oxidase from Hansenula polymorpha was strongly induced when cells were grown with 0.5% methanol supplementation as the carbon source. The induced Hansenula polymorpha alcohol oxidase was purified to electrophoretic homogeneity by using DEAE-Sephacel and Mono Q column chromatographys. The enzyme oxidized mainly primary aliphatic alcohols and exhibited high substrate specificity towards ethanol and methanol. The activity of the enzyme optimally proceeded at pH 8.5 and $50^{\circ}C$. The midpoint of the temperature-stability curve for the enzyme was approximately $52^{\circ}C$ and the enzyme was not completely inactivated even at $65^{\circ}C$ temperature. The enzyme showed resistance toward detergents and highly stable over 7 weeks of storage condition. This Hansenula polymorpha alcohol oxidase may be useful for the enzymatic determination of alcohol and for the industrial production of alcohols and aldehydes.

Characteristics of Leaves, Roots, and Fruit as Influenced by Energized-Functional Water Supply in Fuji Apple Trees (Energized 기능수 처리에 따른 후지사과의 잎, 뿌리 및 과실특성)

  • Kim, Wol Soo;Chung, Soon Ju
    • Horticultural Science & Technology
    • /
    • v.16 no.2
    • /
    • pp.233-235
    • /
    • 1998
  • Energized-functional water (EFW) and powder (EFP) were manufactured by Kyungwon Institute of Life Science, Seoul, through a series of processes; tap water ultra-purification energy imprinting with catalysts in platinum columns mixing energy-imprinted water + activated zeolites + photosynthetic bacteria fermenting at $25^{\circ}C$ filtering EFW and/or EFP. A single application of EFP to soil under tree canopy before bud burst, combined with three EFW applications to soil during growth of 'Fuji' apples (Malus domestica Borkh.) resulted in a higher Ca concentrations in fruit skins and flesh, and lower Ca and N concentrations in leaves and shoot-bark tissues. EFW also stimulated the net photosynthesis of leaves and root activity. Soluble solid concentrations (SSC) and anthocyanin levels of fruits were also significantly increased at harvest, producing greater firmness and less core browning during storage at $0^{\circ}C$. However, there was no significant difference in titratable acidity of fruit juice between the EFW treatment and the controls.

  • PDF

Design of Subthreshold SRAM Array utilizing Advanced Memory Cell (개선된 메모리 셀을 활용한 문턱전압 이하 스태틱 램 어레이 설계)

  • Kim, Taehoon;Chung, Yeonbae
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.954-961
    • /
    • 2019
  • This paper suggests an advanced 8T SRAM which can operate properly in subthreshold voltage regime. The memory cell consists of symmetric 8 transistors, in which the latch storing data is controlled by a column-wise assistline. During the read, the data storage nodes are temporarily decoupled from the read path, thus eliminating the read disturbance. Additionally, the cell keeps the noise-vulnerable 'low' node close to the ground, thereby improving the dummy-read stability. In the write, the boosted wordline facilitates to change the contents of the memory bit. At 0.4 V supply, the advanced 8T cell achieves 65% higher dummy-read stability and 3.7 times better write-ability compared to the commercialized 8T cell. The proposed cell and circuit techniques have been verified in a 16-kbit SRAM array designed with an industrial 180-nm low-power CMOS process.

Development of Tyvek Fashion Product and Textile Pattern Design based on Columnar Joint (주상절리를 활용한 텍스타일 패턴디자인과 타이벡 패션상품 개발)

  • Heo, Seungyeun
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.25 no.3
    • /
    • pp.127-141
    • /
    • 2023
  • The purpose of this study is to develop a textile pattern design using the columnar joints motif and a Tyvek fashion clutch bags using it. As a research method, first, through a literature review, columnar joint and Tyvek are understood, and design cases were considered. Second, through a survey, the purchase perception and design preference of columnar joints cultural products were analyzed. Third, based on the results of the survey on color and print, the pattern design for each type of columnar joint were developed, and the uv-printed Tyvek clutch bag was developed. The results of this study are as follows. First, the reason why the public was not attracted to the purchase of cultural products was dissatisfaction with practicality, price adequacy, and aesthetics. Therefore, it was analyzed that quality, practicality, price, carry-on storage, collection value, and casualness, as well as aesthetic design were important factors for purchasing factors pursued by consumers. Second, consumers preferred small goods the most for cultural products, and they pursued the use of colorful and contrasting colors, modern and geometric patterns, and eco-friendly materials, such as Tyvek. Third, columnar joint can be classified into three cross sections and four arrangements. The design unit of the columnar joint could be expressed as a hexagonal column, and 12 different pattern designs could be developed according to the cross sections and arrangements type. In addition, it was found that it was easy to produce fashion products suitable for the sensibility of modern people by utilizing Tyvek materials.

Design and Implementation of MongoDB-based Unstructured Log Processing System over Cloud Computing Environment (클라우드 환경에서 MongoDB 기반의 비정형 로그 처리 시스템 설계 및 구현)

  • Kim, Myoungjin;Han, Seungho;Cui, Yun;Lee, Hanku
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.71-84
    • /
    • 2013
  • Log data, which record the multitude of information created when operating computer systems, are utilized in many processes, from carrying out computer system inspection and process optimization to providing customized user optimization. In this paper, we propose a MongoDB-based unstructured log processing system in a cloud environment for processing the massive amount of log data of banks. Most of the log data generated during banking operations come from handling a client's business. Therefore, in order to gather, store, categorize, and analyze the log data generated while processing the client's business, a separate log data processing system needs to be established. However, the realization of flexible storage expansion functions for processing a massive amount of unstructured log data and executing a considerable number of functions to categorize and analyze the stored unstructured log data is difficult in existing computer environments. Thus, in this study, we use cloud computing technology to realize a cloud-based log data processing system for processing unstructured log data that are difficult to process using the existing computing infrastructure's analysis tools and management system. The proposed system uses the IaaS (Infrastructure as a Service) cloud environment to provide a flexible expansion of computing resources and includes the ability to flexibly expand resources such as storage space and memory under conditions such as extended storage or rapid increase in log data. Moreover, to overcome the processing limits of the existing analysis tool when a real-time analysis of the aggregated unstructured log data is required, the proposed system includes a Hadoop-based analysis module for quick and reliable parallel-distributed processing of the massive amount of log data. Furthermore, because the HDFS (Hadoop Distributed File System) stores data by generating copies of the block units of the aggregated log data, the proposed system offers automatic restore functions for the system to continually operate after it recovers from a malfunction. Finally, by establishing a distributed database using the NoSQL-based Mongo DB, the proposed system provides methods of effectively processing unstructured log data. Relational databases such as the MySQL databases have complex schemas that are inappropriate for processing unstructured log data. Further, strict schemas like those of relational databases cannot expand nodes in the case wherein the stored data are distributed to various nodes when the amount of data rapidly increases. NoSQL does not provide the complex computations that relational databases may provide but can easily expand the database through node dispersion when the amount of data increases rapidly; it is a non-relational database with an appropriate structure for processing unstructured data. The data models of the NoSQL are usually classified as Key-Value, column-oriented, and document-oriented types. Of these, the representative document-oriented data model, MongoDB, which has a free schema structure, is used in the proposed system. MongoDB is introduced to the proposed system because it makes it easy to process unstructured log data through a flexible schema structure, facilitates flexible node expansion when the amount of data is rapidly increasing, and provides an Auto-Sharding function that automatically expands storage. The proposed system is composed of a log collector module, a log graph generator module, a MongoDB module, a Hadoop-based analysis module, and a MySQL module. When the log data generated over the entire client business process of each bank are sent to the cloud server, the log collector module collects and classifies data according to the type of log data and distributes it to the MongoDB module and the MySQL module. The log graph generator module generates the results of the log analysis of the MongoDB module, Hadoop-based analysis module, and the MySQL module per analysis time and type of the aggregated log data, and provides them to the user through a web interface. Log data that require a real-time log data analysis are stored in the MySQL module and provided real-time by the log graph generator module. The aggregated log data per unit time are stored in the MongoDB module and plotted in a graph according to the user's various analysis conditions. The aggregated log data in the MongoDB module are parallel-distributed and processed by the Hadoop-based analysis module. A comparative evaluation is carried out against a log data processing system that uses only MySQL for inserting log data and estimating query performance; this evaluation proves the proposed system's superiority. Moreover, an optimal chunk size is confirmed through the log data insert performance evaluation of MongoDB for various chunk sizes.

The Study for Identification of waterborne Spilled Oil by Fast Gas Chromatography (Fast GC를 이용한 해상유출유 감식ㆍ분석 기법 연구)

  • Chung J. W.;Lee W.S.;Yoon J. Y.;Kim H. G.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.3
    • /
    • pp.122-130
    • /
    • 2004
  • Crude oil is complex mixture of thousands of different organic compound formed from a variety of organic materials that are chemically converted under differing geological conditions over long periods of time. Also oil composition varies according to crude source, refining, processing, handling and storage. The oil fingerprint method is application of specific knowledge of petrochemicals and use of sophisticated analytical equipment and techniques to identify the source(s) of oil pollution. KNMPA currently utilizes three primary analytical techniques: Gas Chromatography (GC), Fluorescence Spectroscopy(FL) and Infrared Spectroscopy(IR). Of all these techniques, GC technique are most widely used. Gas Chromatography is used as a primary analytical method because high reliableness, high separating efficiency and repeatability, but it is timeconsumable. The study results of identification of waterborne spilled oil by Fast Gas Chromatograph method showed that analytical time is cut down to 30minutes in comparison with packed column method and chromatograms represent high resolution and high repeatability.

  • PDF

Validation of an HPLC Method for the Pharmacokinetic Study of Glipizide in Human (글리피짓 체내동태 연구를 위한 혈청 중 글리피짓의 HPLC 정량법 검증)

  • Cho, Hea-Young;Lee, Hwa-Jeong;Choi, Hoo-Kyun;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.3
    • /
    • pp.137-142
    • /
    • 2005
  • A rapid, selective and sensitive reversed-phase HPLC method for the determination of glipizide in human serum was validated and applied to the pharmacokinetic study of glipizide. Glipizide and internal standard, tolbutamide, were extracted from human serum by liquid-liquid extraction with benzene and analyzed on a Nova Pak $C_{18}\;60{\AA}$ column with the mobile phase of acetonitrile-potassium dihydrogen phosphate (10 mM, pH 3.5) (4:6, v/v). Detection wavelength of 275 nm and flow rate of 0.7 ml/min were fixed for the study. The assay robustness for the changes of mobile phase pH, organic solvent content, and flow rate was confirmed by $3^3$ factorial design using a fixed glipizide concentration (500 ng/ ml) with respect to its peak area and retention time. And also, the ruggedness of this method was investigated at three different laboratories using same quality control (QC) samples. This method showed linear response over the concentration range of 10-1000 ng/ml with correlation coefficient greater than 0.999. The lower limit of quantitation using 0.5 ml of serum was 10.0 ng/ml, which was sensitive enough for pharmacokinetic studies. The overall accuracy of the quality control samples ranged from 82.6 to 105.0% for glipizide with overall precision (% C.V.) being 1.13-13.20%. The percent recovery for human serum was in the range of 85.2 93.5%. Stability studies showed that glipizide was stable during storage, or during the assay procedure in human serum. The peak area and retention time of glipizide were not significantly affected by the changes of mobile phase pH, organic solvent content, and flow rate under the conditions studied. This method showed good ruggedness (within 15% C.V.) and was successfully used for the analysis of glipizide in human serum samples for the pharmacokinetic studies at three different laboratories, demonstrating the suitability of the method.

Development and Validation of an HPLC Method for the Pharmacokinetic Study of Etodolac in Human (에토돌락 체내동태 연구를 위한 혈청 중 에토돌락의 HPLC 정량법 개발 및 검증)

  • Cho, Hea-Young;Kang, Hyun-Ah;Moon, Jai-Dong;Choi, Hoo-Kyun;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.4
    • /
    • pp.265-271
    • /
    • 2005
  • A rapid, selective and sensitive reversed-phase HPLC method for the determination of etodolac in human serum was developed, validated, and applied to the pharmacokinetic study of etodolac. Etodolac and internal standard, ibuprofen were extracted from human serum by liquid-liquid extraction with hexane/isopropanol (95:5, v/v) and analyzed on a Luna C18(2) column with the mobile phase of 1% aqueous acetic acid-acetonitrile (4:6, v/v). Detection wavelength of 227 nm and flow rate of 1.0 mL/min were fixed for the study. The assay robustness for the changes of mobile phase pH, organic solvent content, and flow rate was confirmed by $3^3$ factorial design using a fixed etodolac concentration $(1\;{\mu}g/mL)$ with respect to its peak area and retention time. And also, the ruggedness of this method was investigated at three different laboratories using same quality control (QC) samples. This method showed linear response over the concentration range of $0.05-40\;{\mu}g/mL$ with correlation coefficients greater than 0.999. The lower limit of quantification using 0.5 mL of serum was 0.05 ${\mu}g/mL$, which was sensitive enough for pharmacokinetic studies. The overall accuracy of the quality control samples ranged from 92.00 to 110.00% for etodolac with overall precision (% C.V.) being 1.08-10.11%. The percent recovery for human serum was in the range of 76.73-115.30%. Stability studies showed that etodolac was stable during storage, or during the assay procedure in human serum. The peak area and retention time of etodolac were not significantly affected by the changes of mobile phase pH, organic solvent content, and flow rate under the conditions studied. This method showed good ruggedness (within 15% C.V.) and was successfully used for the analysis of etodolac in human serum samples for the pharmacokinetic studies of orally administered Lodin XL tablet (400 mg as etodolac) at three different laboratories, demonstrating the suitability of the method.

Development and Validation of an HPLC Method for the Pharmacokinetic Study of Fenoprofen in Human (페노프로펜 체내동태 연구를 위한 혈청 중 페노프로펜의 HPLC 정량법 개발 및 검증)

  • Cho, Hye-Young;Kang, Hyun-Ah;Kim, Yoon-Gyoon;Sah, Hong-Kee;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.6
    • /
    • pp.423-429
    • /
    • 2005
  • A selective and sensitive reversed-phase HPLC method for the determination of fenoprofen in human serum was developed, validated, and applied to the pharmacokinetic study of fenoprofen calcium. Fenoprofen and internal standard, ketoprofen, were extracted from human serum by liquid-liquid extraction with diethyl ether and analyzed on a Luna C18(2) column with the mobile phase of acetonitrile-3 mM potassium dihydrogen phosphate (32:68, v/v, adjusted to pH 6.6 with phosphoric acid). Detection wavelength of 272 nm and flow rate of 0.25 mL/min were fixed for the study. The assay robustness for the changes of mobile phase pH, organic solvent content, and flow rate was confirmed by $3^{3}$ factorial design using a fixed fenoprofen concentration $(2\;{\mu}g/mL)$ with respect to its peak area and retention time. And also, the ruggedness of this method was investigated at three different laboratories using same quality control (QC) samples. This method showed linear response over the concentration range of $0.05-100\;{\mu}g/mL$ with correlation coefficients greater than 0.999. The lower limit of quantification using 1 mL of serum was $0.05\;{\mu}g/mL$, which was sensitive enough for pharmacokinetic studies. The overall accuracy of the quality control samples ranged from 92.27 to 109.20% for fenoprofen with overall precision (% C.V.) being 5.51-11.71 %. The relative mean recovery of fenoprofen for human serum was 81.7%. Stability (freeze-thaw, short and long-term) studies showed that fenoprofen was not stable during storage. But, extracted serum sample and stock solution were allowed to stand at ambient temperature for 12 hr prior to injection without affecting the quantification. The peak area and retention time of fenoprofen were not significantly affected by the changes of mobile phase pH, organic solvent content, and flow rate under the conditions studied. This method showed good ruggedness (within 15% C.V.) and was successfully used for the analysis of fenoprofen in human serum samples for the pharmacokinetic studies of orally administered Fenopron tablet (600 mg as fenoprofen) at three different laboratories, demonstrating the suitability of the method.