• Title/Summary/Keyword: column seismic retrofit

Search Result 103, Processing Time 0.03 seconds

Seismic retrofit of a steel-reinforced concrete hospital building using continuous energy-dissipative steel columns

  • Massimiliano Ferraioli;Biagio Laurenza;Angelo Lavino;Ciro Frattolillo;Gianfranco De Matteis
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.467-488
    • /
    • 2023
  • Seismic retrofit of an existing steel-reinforced concrete hospital building that features innovative use of a continuous energy-dissipative steel column (CEDC) system is presented in this paper. The special system has been adopted to provide an efficient solution taking into account the difficulties of applying traditional intervention techniques to minimize the impact on architectural functionality and avoid the loss of building function and evacuation during the retrofit implementation. The lateral stiffness and strength of the CEDC system were defined based on the geometric and mechanical properties of the steel strip dampers. The hysteretic behavior under cyclic loadings was defined using a simplified numerical model. Its effectiveness was validated by comparing the results of full-scale experimental data available from the literature. All the main design considerations of the retrofitting plan are described in detail. The effectiveness of the proposed retrofitting system was demonstrated by nonlinear time-history analyses under different sets of earthquake-strong ground motions. The analysis results show that the CEDC system is effective in controlling the deformation pattern and significantly reducing damage to the existing structure during major earthquakes.

Numerical Study on the Estimation of Surface Constrained Pressure for Ductile Behavior of RC Columns (RC 기둥의 연성거동을 위한 표면구속응력 산정에 관한 해석적 연구)

  • Kim, Kyeong-Min;Lee, Su-Young;Kim, Geon-Woo;Kwon, MinHo;Kim, JinSup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.48-56
    • /
    • 2021
  • Due to the recent earthquake that has occurred worldwide, interest in seismic reinforcement of structures is increasing. In order to improve the seismic performance of the structure, the seismic reinforcement of the column should be made. Various seismic retrofit methods are being developed to improve the seismic performance of columns. In this study, in order to improve the seismic performance of RC columns, an numerical study was conducted to evaluate the seismic performance of the columns by applying a surface constrained pressure. For the numerical study, the experimental study on the column was used, and the failure shape and behavior characteristics of the experimental results and the numerical results were compared. As a result of the numerical study, the ductile behavior of the RC columns occurred according to the strength of the surface constraining stress. In addition, ductile behavior occurred almost constant above a certain surface constrained pressure. Compared with the numerical results and the experimental results, he reinforcing effect of the used seismic reinforcement of the column in experimental study was compared with the value of the surface constrained pressure for the RC column, and the seismic reinforcing effect was examined as the surface constrained pressure value for the RC column. In conclusion, in this work, surface constrained stress and constrained strength for ductile behavior of RC columns are derived. Based on the results derived, it is believed that it can be used as basic data on the review of seismic design methods and seismic performance complementary effects using ductile behavior induction of RC columns.

Seismic Retrofit of GFRP Wrapping on the Lap-spliced Bridge Piers (GFRP 래핑에 의한 겹침이음된 교각의 내진보강)

  • Youm, Kwang Soo;Kwon, Tae Gyu;Lee, Young Ho;Hwang, Yoon Kook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.311-318
    • /
    • 2006
  • This paper presents experimental studies on investigating the seismic retrofit performance of reinforced concrete circular columns with poor lap-splice details using GFRP wrapping. Five full-scale model columns have been tested. The prototype structure is an existing circular reinforced concrete bridge piers designed following the pre-seismic codes and constructed in South Korea in 1979. The as-built column will be expected to suffer brittle failure due to the bond failure of lap-spliced longitudinal reinforcement. The retrofitted columns using GFRP wrapping showed significant improvement of seismic performance. However, the predicted flexural failure mode was not achieved and the longitudinal bars were not yielded. Failure modes of the retrofitted columns are considered to be the gradually delayed bond slip in lap-spliced longitudinal reinforcement. Suggested retrofit design methods using GFRP were validated experimentally.

An Experimental Study on Seismic Performance of Reinforced Concrete Beam-Column Retrofitted with Replaceable Steel Haunch System (교체 가능한 강재 헌치 시스템으로 보강한 철근 콘크리트 보-기둥 구조물의 내진성능에 관한 실험적 연구)

  • Kim Yoon Sung;Kim Min Sook;Lee Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.1
    • /
    • pp.81-88
    • /
    • 2024
  • The purpose of this study is to experimentally analyze the seismic performance of beam-column specimens with vertical irregular, which were reinforced with RHS (Replaceable steel haunch system). a steel haunch system. To evaluate the seismic performance of the RHS, three specimens were manufactured and subjected to cycle loading tests. Retrofitted specimens have different beam-upper column stiffness ratio as a variable. The stiffness ratio of beam-upper column were considered to be 1.2 and 0.84. As a result of the test, the specimen reinforced with RHS showed improved maximum load and effective stiffness, and energy dissipation capacity compared to the non-retrofitted specimen with same beam-upper column stiffness ratio. The specimen with 0.84 beam-upper column stiffness ratio showed improved performance than the specimen with 12.

Seismic Retrofit of 1/2 Scale-down Circular RC Columns with GFRP Wrapping (1/2 축소된 원형교각의 GFRP 래핑 내진보강)

  • Youm, Kwang-Soo;Choi, Young-Min;Lee, Young-Ho;Kwon, Tae-Gyu;Kim, Jung-Ho;Hwang, Yoon-Koog
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.250-253
    • /
    • 2006
  • This paper presents experimental studies on investigating the seismic retrofit performance of reinforced concrete circular columns with poor lap-splice details using GFRP wrapping. Four 1/2 scale-down model columns have been tested. The as-built column is expected to suffer brittle failure due to the bond failure of lap-spliced longitudinal reinforcement. The retrofitted columns using GFRP wrapping showed significant improvement of seismic performance.

  • PDF

Seismic Performance of Replaceable Steel Brace System Subjected to Combined Loadings (복합하중을 고려한 교체 가능한 강재 브레이스 시스템의 내진성능)

  • Ro Kyong Min;Kim Yoon Sung;Kim Min Sook;Lee Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.4
    • /
    • pp.43-50
    • /
    • 2023
  • This study aims to assess the seismic performance of retrofitted reinforced concrete columns using a Replaceable Steel Brace (RSB) system, subjected to combined axial, lateral, and torsional loadings. Through experimental testing, one non-retrofitted concrete column specimen and two retrofitted specimens with variable sliding slot lengths were subjected to eccentric lateral loads to simulate realistic seismic loading. The retrofitted specimens with RSBs exhibited enhanced resistance against shear cracking, effective torsional resistance, and demonstrated the feasibility of easy replacement. The RSB system substantially improved seismic performance, achieving approximately 1.7 times higher load capacity and 3.5 times greater energy dissipation compared to non-retrofitted column, thus validating its efficacy under combined loading conditions.

Retrofit Design of RC Column by Displacement-Based-Design Method (변위기반설계법에 의한 철근콘크리트 기둥의 보강설계)

  • Lim, Cheong-Kweon;Kwon, Min-Ho;Ha, Keum-Hee;Kim, Jin-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2804-2811
    • /
    • 2012
  • In this study, It is developed a retrofitting procedure of RC column with rectangular section to archive the target displacement at failure. Nonlinear behavior of the column is considered as the equivalent linear system. First, target displacement is determined, and then elastic displacement spectrum is constructed to estimate the equivalent natural vibration period of the SDOF system. After natural vibration period is determined, required strength is calculated using secant stiffness based on the mass of system. In accordance with, obtained force-displacement relationship through non-linear fiber based section analysis, retrofit design was carried out to meet required strength. As a result, retrofitted RC column can confirm that the improved seismic performance. It is observed that the proposed design procedure can be applicable to seismic retrofitting design of columns.

Seismic Retrofit in Educational Facilities Using Attaching Composite Material (부착형 복합소재를 이용한 교육시설의 내진보강)

  • Park, Choon-Wook;Song, Geon-Su;Park, Ik-Hyun;Kim, Dong-Hwi
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.3
    • /
    • pp.73-81
    • /
    • 2013
  • In paper after the strong earthquake of recently the Korea neighborhood, the Korean government survey show that the 86% of school buildings in Korea are in potential damage risk and only 14% of them are designed as earthquake-resistance buildings. Earthquake Reinforcing projects of school have been a leading by the ministry of education, however their reinforcing methods done by not proved a engineering by experiment which results in uneconomical and uneffective rehabilitation for the future earthquake. An experimental and analytical study have been conducted for the shear reinforcing method of column by axis and horizontal axis load using attaching composite beam. Based on the previous research, in this study, Design examples are given to show the performance evaluation for the column reinforcing of old school buildings using nonlinear analysis is going to be conducted and strengthening method is going to be on the market after their performance is proved by the test.

A Study on the Seismic Retrofit of Column in Educational Facilities Using Composite Material (복합소재를 이용한 교육시설의 기둥 내진보강공법에 관한 연구)

  • Park, Choon-Wook;Lee, Hung-Joo;Joo, Chi-Hong;Hong, Won-Hwa
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.20 no.1
    • /
    • pp.45-52
    • /
    • 2013
  • In paper after the strong earthquake of recently the Korea neighborhood, the Korean government survey show that the 86% of school buildings in Korea are in potential damage risk and only 14% of them are designed as earthquake-resistance buildings. Reinforcing projects of school have been conducting by the ministry of education, however their reinforcing methods done by not proved a engineering by experiment which results in uneconomical and uneffective rehabilitation for the future earthquake. An experimental and analytical study have been conducted for the shear and flexural reinforcing method of RC beam using composite beam. Based on the previous research, in this study, performance evaluation for the column reinforcing of old school buildings using nonlinear analysis is going to be conducted and strengthening method is going to be on the market after their performance is proved by the test.

Seismic Performance Evaluation of Non-Seismic Reinforced Concrete Buildings Strengthened by Perimeter Steel Moment Frame (철골 모멘트골조로 보강된 철근콘크리트 건물의 내진성능 평가)

  • Kim, Seonwoong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.233-241
    • /
    • 2020
  • This paper is to investigate the retrofitting effect for a non-seismic reinforced concrete frame strengthened by perimeter steel moment frames with indirect integrity, which ameliorates the problems of the direct integrity method. To achieve this, first, full-scale tests were conducted to address the structural behavior of a two-story non-seismic reinforced concrete frame and a strengthened frame. The non-seismic frame showed a maximum strength of 185 kN because the flexural-shear failure at the bottom end of columns on the first floor was governed, and shear cracks were concentrated at the beam-column joints on the second floor. The strengthened frame possessed a maximum strength of 338 kN, which is more than 1.8 times that of the non-seismic specimen. A considerable decrease in the quantity of cracks for the strengthened frame was observed compared with the non-seismic frame, while there was the obvious appearance of the failure pattern due to the shear crack. The lateral-resisting capacity for the non-seismic bare frame and the strengthened frame may be determined per the specified shear strength of the reinforced columns in accordance with the distance to a critical section. The effective depth of the column may be referred to as the longitudinal length from the border between the column and the foundation. The lateral-resisting capacity for the non-seismic bare frame and the strengthened frame may be reasonably determined per the specified shear strength of the reinforced columns in accordance with the distance to a critical section. The effective depth of the column may be referred to as the longitudinal length from the border between the column and the foundation. The proposed method had an error of about 2.2% for the non-seismic details and about 4.4% for the strengthened frame based on the closed results versus the experimental results.