• Title/Summary/Keyword: column sections

Search Result 261, Processing Time 0.028 seconds

Development and Clinical Application of Critical Pathways for Vaginal Delivery and Cesarean Section (정상산모의 질식분만 및 제왕절개술에 대한 표준진료지침서의 개발과 임상 적용)

  • Park, Yong Won;Bai, Sang Wook;Jung, Young Nae;Lee, Hae Woo;Kim, Young Ran;Hong, Sun Bok;Park, Heun Ju;Tark, Kwan Chul
    • Quality Improvement in Health Care
    • /
    • v.7 no.1
    • /
    • pp.32-45
    • /
    • 2000
  • Background : Critical pathway is an optional sequencing and timing of interventions by physicians, nurses, and other staff for a particular diagnosis or procedure, designed to minimize delays and resource utilization, and to maximize quality of care; abbreviated versions of case management plans that show critical outcome and key incidents that occur in a predictable and timely fashion to achieve an appropriate length of stay. This study is to develop a critical pathway for vaginal delivery and cesarean section to assess the degree of contentment of the patients and medical personnel and to implement clinical application to see how we could meet the need to guide patients to achieve continuum of care. Method : Critical pathways were developed for normal vaginal delivery and casarean section. LOS(length of stay) target for vaginal delivery was 1 day after delivery & 5 days after C-section. It was distributed to the mother at the OPD and explained thoroughly. It was applied when patients got into the Labor & Delivery Floor. We applied total of 42 patients (30 normal deliveries & 12 C-sections) from February to March, 2000. We performed patient satisfaction survey to all 42 patients, 24 nurses, and 7 residents for internal customer satisfaction. Results : Twenty six patients out of 42 responded to the survey. Twenty one patients out of 26 answered satisfactory. Eighty four percent of 21 respondents replied Critical pathway worked very well. Treatment column got the most compliance. Eleven out of 31 employees thought critical pathway is very helpful for the patient care. Eighteen people didn't see any difference. In their opinion, treatment got the least compliance, which is the contrary to patients opinion. Fifty eight percent of respondents thought that critical pathway can expedite early discharge. Conclusion : Patient satisfaction was higher than we expected but we still need to revise the form. It is recommended to analyze the cost and variance check in the future.

  • PDF

Analysis Study on Fire Performance with Internal Anchored Concrete Filled Steel Tube Columns According to Percent of Steel-Fibers (강섬유 콘크리트 혼입율에 따른 내부앵커형 콘크리트 충전기둥 내화성능에 관한 해석적 연구)

  • Kim, Sun Hee;Yom, Kong Soo;Kim, Yong Hwan;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.1
    • /
    • pp.23-34
    • /
    • 2016
  • Concrete filled steel tube system has two major advantages. First, the confinement effect of steel tube improves the compressive strength of concrete. Second, the load capacity and deformation capacity of members are improved because concrete restrains local buckling of steel tube. It does, however, involve workability problem of using stud bolts or anchor bolts to provide composite effect for larger cross-sections. While the ribs inside the columns are desirable in terms of compressive behavior, they cause the deterioration in load capacity upon in-plane deformation resulting from thermal deformation. Since the ribs are directly connected with the concrete, the deformation of the ribs accelerates concrete cracking. Thus, it is required to improve the toughness of the concrete to resist the deformation of the ribs. Welding built-up tubular square columns can secure safety in terms of fire resistance if the problem are solved. This study focuses on mixing steel fiber in the concrete to improve the ductility and toughness of the columns. In order to evaluate fire resistance performance, loaded heating test was conducted with 8 specimens. The behavior and thermal deformation capacity of the specimens were analyzed for major variables including load ratio. The reliability of heat transfer and thermal stress analysis model was verified through the comparison of the results between the test and previous study.

Experimental Study on Strengthening Effect of Plastic Greenhouse using Tension-tie (인장타이를 이용한 비닐하우스의 보강효과에 관한 실험적 연구)

  • Jang, Yu-Jin;Lee, Swoo-Heon;Chae, Seoung-Hun;Shin, Kyung-Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.151-160
    • /
    • 2010
  • The number of cases of collapsed plastic greenhouses in farmlands has increased due to the heavy local snowfall caused by extraordinary atmospheric phenomena. Consequently, the economic losses of farmers have also increased. However the government policy in relation to damage pretension is insufficient and collapse case is repeated every year. The main reason for frame collapse is that the moment capacity of a steel pipe is not sufficient to resist a heavy snowload. In this study, experiments were conducted on the current frame system of a greenhouse with a tension tie. The frame consisted of two sections(${\phi}25.4{\times}1.5$, ${\phi}31.8{\times}1.5$), and its span length was 6.5 m. A temporary tension tie using a steel wire and a fabric rope was connected to the two joints, to which a curved beam and a straight column were connected. The pretension force was applied at the tension tie, and a vertical force simulating snowfall was applied until failure. The fabric rope frame increased the load-carrying capacity by 10-45% compared to the normal frame without a tension tie, and the steel wire frame increased the load-carrying capacity by 58-73% compared to the normal frame without a tension tie. Steel wire was found to be more effective as far as strength is concerned, but its connection details and pretension application are more difficult and complicated than those of the fabric rope. The test results thus show that the fabric rope is more preferable.

A Study on Development of Assessment Model for Spatio-Temporal Changes in River Bed Using Numerical Models (수치모형을 이용한 하상변동 시공간 평가 기법 개발 연구)

  • Kim, Chul-Moon;Lee, Jeong-Ju;Choi, Su-Won;Ahn, Won-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.12
    • /
    • pp.975-990
    • /
    • 2011
  • In this study, to develop an assessment method for spatio-temporal riverbed changes, a 1-dimensional model (HEC-RAS) and a 2-dimensional model (CCHE2D) were built and applied. As for the analysis of a riverbed's long-term change in a real stream, three new assessment methods were developed, which are called the "Sediment section cumulative curve", "Sediment section moment", and "Sediment probability distribution function." These methods were used to assess the characteristics of riverbed changes using a consistent valuation standard and to understand changes in quantities intuitively. From the results of this study, sediment characteristics of cross sections can be detected effectively by applying the "Sediment section cumulative curve" method to determine whether there is any sedimentation or erosion in total emission. The amount of sedimentation or erosion occurring in the right or left banks, which divided by center column, could be presented as one criterion by applying the "Sediment section moment" method. This approach could be utilized as an indicator for sediment predictions. Spatio-temporal sediment variables can be presented quantitatively by determining the mean and uncertain boundaries through the "Sediment probability distribution function", and finally, the results can be illustrated for each cross section to provide intuitive recognition.

Shortest Path Problems of Military Vehicles Considering Traffic Flow Characteristics (교통류특성을 고려한 군화물차량군 경로선정)

  • 방현석;김건영;강경우
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.2
    • /
    • pp.71-82
    • /
    • 2003
  • The shortest path problems(SPP) are critical issues in the military logistics such as the simulation of the War-Game. However, the existing SPP has two major drawbacks, one is its accuracy of solution and the other is for only one solution with focused on just link cost in the military transportation planning models. In addition, very few previous studies have been examined for the multi-shortest path problems without considering link capacity reflecting the military characteristics. In order to overcome these drawbacks, it is necessary to apply the multi-shortest paths algorithm reflecting un-expected military incidents. This study examines the multi-shortest paths in the real networks using Shier algorithm. The network contains both military link capacity and time-based cost. Also, the modes are defined as a platoon(group) rather than unit which is used in most of previous studies in the military logistics. To verify the algorithm applied in this study. the comparative analysis was performed with various sizes and routes of network which compares with Dijkstra algorithm. The major findings of this study are as follows ; 1) Regarding the unique characteristics of the military transportation plan, Shier algorithm, which is applied to this study, is more realistic than Dijkstra algorithm. Also, the time based concept is more applicable than the distance based model in the military logistics. 2) Based on the results from the various simulations of this study the capacity-constraint sections appeared in each scenarios. As a consequence, the alternatives are necessary such as measures for vulnerable area, improvement of vehicle(mode), and reflection of separated-marching column in the military manuals. Finally. the limits and future research directions are discussed : 1) It is very hard to compare the results found in this study. which is used in the real network and the previous studies which is used in arbitrary network. 2) In order to reflect the real military situations such as heavy tanks and heavy equipment vehicles. the other constraints such as the safety load of bridges and/or the height of tunnels should be considered for the future studies.

Pullout Test of Reinforcement with End Mechanical Anchoring Device (단부 기계적 정착장치를 갖는 철근의 뽑힘강도)

  • 김용곤;임원석;최동욱
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.430-439
    • /
    • 2002
  • The development of reinforcing steel is required in reinforced concrete structures. The standard hooks that have been widely used for the tensile development in the beam-column joints tend to create difficulties of construction such as steel congestion as the member cross sections are becoming smaller due to the use of higher strength concrete and higher grade steel. Using the reinforcing bars with end mechanical anchoring device (headed reinforcement) provides potential economies in construction such as reduction in development lengths, simplified details, and improved responses to cyclic loadings. In this paper, the pullout strengths and behaviors of the headed reinforcement were experimentally studied. In 33 pullout tests performed using D25 deformed reinforcing bars, the test parameters were embedment depth, edge distance, head size, and the use of transverse reinforcement. The pullout strengths determined from tests closely agreed with the pullout strengths predicted using the CCD method. The pullout strengths increased with increasing embedment depths nd edge distances. The strengths tend to increase with the use of larger heads. From the experimental program where the effect of the transverse reinforcement was examined, a modification factor to the CCD was suggested to represent the effect of such reinforcement that is installed across the concrete failure plane on the pullout strengths.

Nonlinear Lateral Behavior and Cross-Sectional Stress Distribution of Concrete Rocking Columns (콘크리트 회전형 기둥의 비선형 횡방향 거동 및 단면응력 분포 분석)

  • Roh, Hwa-Sung;Hwang, Woong-Ik;Lee, Hu-Seok;Lee, Jong-Seh
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.285-292
    • /
    • 2012
  • Fixed connection is generally used for beam and column connections of concrete structures, but significant damages at the connection due to severe earthquakes have been reported. In order to reduce damages of the connection and improve seismic performance of the connection, several innovative connections have been suggested. One newly proposed connection type allows a rotation of the connection for applications in rotating or rocking beams, columns, and shear walls. Such structural elements would provide a nonlinear lateral force-displacement response since their contact depth developed during rotation is gradually reduced and the stress across the sections of the elements is non-linearly distributed around a contact area, which is called an elastic hinge region in the present study. The purpose of the present study is to define the elastic hinge region or length for the rocking columns, through investigating the cross-sectional stress distribution during their lateral behavior. Performing a finite element analysis (FEA), several parameters are considered including axial load levels (5% and 10% of nominal strength), different boundary conditions (confined-ends and cantilever types), and slenderness ratios (length/depth = 5, 7, 10). The FEA results showed that the elastic hinge length does not directly depend on the parameters considered, but it is governed by a contact depth only. The elastic hinge length started to develop after an opening state and increased non-linearly until a rocking point(pre-rocking). However, the length did not increase any more after the rocking point (post-rocking) and remained as a constant value. Half space model predicting the elastic hinge length is adapted and the results are compared with the numerical results.

Distribution and characteristics of Quaternary faults in the coastal area of the southeastern Korean Peninsula: Results from a marine seismic survey (해양 탄성파 탐사 결과로 본 한반도 남동부연안 4기 단층의 분포와 특성)

  • Kim Han-Joon;Jou Hyeong-Tae;Hong Jong-Kuk;Park Gun-Tae;Nam Sang-Heon;Cho Hyun-Moo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2002.09a
    • /
    • pp.46-66
    • /
    • 2002
  • High-resolution multichannel seismic data were collected in the coastal area near the Gori nuclear power plant to investigate Quaternary fault pattern and timing. A 12 channel streamer, a sparker, and a portable recorder were used for data acquisition. Because the group interval of the streamer was 6.25 m and the sparker can generate acoustic waves with the frequency content of up to 500 Hz, the data show a significant improvement both in horizontal and vertical resolution. The area surveyed is covered with 30-40 m thick Holocene sediments that constitute the mud belt along the southeastern coast of Korea. The survey area is characterized by the well discriminated Pleistocene and Holocene boundary and shallow gas-charged zones. A number of Quaternary faults were found in the sediment column, that are nearly vertical and extend north-south. The Quaternary faults, arranged at a spacing of a few hundred meters, suggest that they were formed in response to compression, although some of them reveal extensional characteristics. Locally, faults disrupt Incised-channel fills that are interpreted to have formed in the early stage of transgression after the beginning of the Holocene. Seismic sections suggest that shallow gas in the mud belt sediments made its way upward through the fractured fault planes. The tectonism responsible for the opening of the East Sea has not persisted since the late Miocene, but vigorous Quaternary faulting activity in the vicinity of the southeastern Korean Peninsula indicates that tectonic stability has yet to be achieved in this region underlain by the hotter than normal mantle.

  • PDF

Explicit Stress-Erection and Ultimate Load Analysis of Unit STRARCH Frame Considering Geometrically and Materially Nonlinear Characteristics (기하학적 재료적 비선형 특성을 고려한 스트라치 단위부재의 명시적 긴장설치 및 극한하중 해석)

  • Lee, Kyoung-Soo;Han, Sang-Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.429-438
    • /
    • 2011
  • In this study, the explicit numerical algorithm was proposed to simulate the stress erection process and ultimate-load analysis of the strarch (stressed arch) system. The strarch system is a unique and innovative structural system and member prestress comprising prefabricated plane truss frames erected through a post-tensioning stress erection procedure. The flexible bottom chord, which has sleeve and gap details, is closed by the reaction force of the prestressing tendon. The prestress imposed on the tendon will enable the strarch system to be erected. This post-tensioning process is called "stress erection process." During this process, plastic rigid-body rotation occurs to the flexible top chord due to the excessive amount of plastic strain, and the structural characteristic is unstable. In this study, the dynamic relaxation method (DRM) was adopted to calculate the nonlinear equilibrium equation of the system, and a displacement-based finite-element-formulated filament beam element was used to simulate the nonlinear behavior of the top chord sections of the strarch system. The section of the filament beam element was composed by the amount of filaments, which can be modeled by various material models. The Ramberg-Osgood and bilinear kinematic elastic plastic material models were formulated for the nonlinear material behaviors of the filaments. The numerical results that were obtained in the present study were compared with the experiment results of the stress erection and with the results of the ultimate-load analysis of the strarch unit frame. The results of the present studies are in good agreement with the previous experiment results, and the explicit DRM enabled the analysis of the post-buckling behaviors of the strarch unit frame.

Scientific Significances of the Seongryu Cave (Natural Monument No. 155) (성류굴(천연기념물 제155호)의 과학적 중요성)

  • Kim, Lyoun(Ryeon);Woo, Kyung Sik;Kim, Bong Hyeon;Park, Jae Suk;Park, Hun Young;Jeong, Hae Jeong;Lee, Jong Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.1
    • /
    • pp.236-259
    • /
    • 2010
  • The examination of sediment distribution in Seongryu Cave shows existence of rocks contrasting with Joseon Supergroup contrary to existing knowledge. Contrasting especially with the Taeback Group, Daegi Formation, Hwajeol Formation, and Dongjeom Formation has been observed. Unlike Taeback area where Dumugol Formation and Makgol Formation are observed on top of Dongjeom Formation, the rocks of this area are not clear in its separation between the two, so that it was named Geunnam Formation. Seongryu Cave has been developed in this Ordovician Geunnam Formation of the Joseon Supergroup. The cave, mostly horizontal, runs in the NE-SW direction, and contains three lakes. The main passage and branches are about 330 m and 540 m, respectively, making the total length of the cave about 870 m (show cave area = 270 m). Through underwater examination, about 85 m-long underwater passage was newly discovered. Various speleothem such as soda straw, stalactite, stalagmite, column, flowstone, rimston, cave shield, cave coral, curtain, bacon sheet, cave pearl, cave flower, helictite and calcite raft can be found in the cave. There are sections with constant flow of cavern water, but the majority of cavern water in the cave come from the ceiling. The most important discovery in this study is the presence of various speleothem in the submerged part of cave passages. Traces of corrosion and/or erosion can be observed in the speleothem in the submerge passage.