• 제목/요약/키워드: column behavior

검색결과 1,615건 처리시간 0.029초

Joint Shear Behavior Prediction for RC Beam-Column Connections

  • LaFave, James M.;Kim, Jae-Hong
    • International Journal of Concrete Structures and Materials
    • /
    • 제5권1호
    • /
    • pp.57-64
    • /
    • 2011
  • An extensive database has been constructed of reinforced concrete (RC) beam-column connection tests subjected to cyclic lateral loading. All cases within the database experienced joint shear failure, either in conjunction with or without yielding of longitudinal beam reinforcement. Using the experimental database, envelope curves of joint shear stress vs. joint shear strain behavior have been created by connecting key points such as cracking, yielding, and peak loading. Various prediction approaches for RC joint shear behavior are discussed using the constructed experimental database. RC joint shear strength and deformation models are first presented using the database in conjunction with a Bayesian parameter estimation method, and then a complete model applicable to the full range of RC joint shear behavior is suggested. An RC joint shear prediction model following a U.S. standard is next summarized and evaluated. Finally, a particular joint shear prediction model using basic joint shear resistance mechanisms is described and for the first time critically assessed.

축하중을 받는 ICH-CFT 단면의 비선형 거동 분석 (Nonlinear behavior analysis of ICH-CFT section under axial force)

  • 박종근;한택희;유재홍;강영종
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.291-294
    • /
    • 2008
  • A ICH-CFT colunn(internally confined hollow-concrete filled tube column) has many advantages compare with R.C column and CFT column. For example using a hollow section, it is possible to save material and to reduce self weight of column. Also two steel tubes on both sid of concrete, inner and outter tube, can improve ductility of ICH-CFT column. But study about ICH-CFT section has done only theoretically. Thus although ICH-CFT column has many advantages, ICH-CFT column dosen't use in construction. In this thesis, through out 3-D full modeling using ABAQUS analyze the nonlinear behavaior of ICH-CFT column. And using the analysis result, review the theoretical knowledge.

  • PDF

Evaluating the accuracy of a new nonlinear reinforced concrete beam-column element comprising joint flexibility

  • Izadpanah, Mehdi;Habibi, AliReza
    • Earthquakes and Structures
    • /
    • 제14권6호
    • /
    • pp.525-535
    • /
    • 2018
  • This study presents a new beam-column model comprising material nonlinearity and joint flexibility to predict the nonlinear response of reinforced concrete structures. The nonlinear behavior of connections has an outstanding role on the nonlinear response of reinforced concrete structures. In presented research, the joint flexibility is considered applying a rotational spring at each end of the member. To derive the moment-rotation behavior of beam-column connections, the relative rotations produced by the relative slip of flexural reinforcement in the joint and the flexural cracking of the beam end are taken into consideration. Furthermore, the considered spread plasticity model, unlike the previous models that have been developed based on the linear moment distribution subjected to lateral loads includes both lateral and gravity load effects, simultaneously. To confirm the accuracy of the proposed methodology, a simply-supported test beam and three reinforced concrete frames are considered. Pushover and nonlinear dynamic analysis of three numerical examples are performed. In these examples the nonlinear behavior of connections and the material nonlinearity using the proposed methodology and also linear flexibility model with different number of elements for each member and fiber based distributed plasticity model with different number of integration points are simulated. Comparing the results of the proposed methodology with those of the aforementioned models describes that suggested model that only uses one element for each member can appropriately estimate the nonlinear behavior of reinforced concrete structures.

Experimental study on seismic behavior of frame structures composed of concrete encased columns with L-shaped steel section and steel beams

  • Zeng, Lei;Ren, Wenting;Zou, Zhengtao;Chen, Yiguang;Xie, Wei;Li, Xianjie
    • Earthquakes and Structures
    • /
    • 제16권1호
    • /
    • pp.97-107
    • /
    • 2019
  • The frame structures investigated in this paper is composed of Concrete encased columns with L-shaped steel section and steel beams. The seismic behavior of this structural system is studied through experimental and numerical studies. A 2-bay, 3-story and 1/3 scaled frame specimen is tested under constant axial loading and cyclic lateral loading applied on the column top. The load-displacement hysteretic loops, ductility, energy dissipation, stiffness and strength degradation are investigated. A typical failure mode is observed in the test, and the experimental results show that this type of framed structure exhibit a high strength with good ductility and energy dissipation capacity. Furthermore, finite element analysis software Perform-3D was conducted to simulate the behavior of the frame. The calculating results agreed with the test ones well. Further analysis is conducted to investigate the effects of parameters including concrete strength, column axial compressive force and steel ratio on the seismic performance indexes, such as the elastic stiffness, the maximum strength, the ductility coefficient, the strength and stiffness degradation, and the equivalent viscous damping ratio. It can be concluded that with the axial compression ratio increasing, the load carrying capacity and ductility decreased. The load carrying capacity and ductility increased when increasing the steel ratio. Increasing the concrete grade can improve the ultimate bearing capacity of the structure, but the ductility of structure decreases slightly.

Dynamic behavior of clayey sand over a wide range using dynamic triaxial and resonant column tests

  • Guler, Ersin;Afacan, Kamil B.
    • Geomechanics and Engineering
    • /
    • 제24권2호
    • /
    • pp.105-113
    • /
    • 2021
  • Deformations in soils induced by dynamic loads cause damage to the structures above the soil layers. It is important for geotechnical engineering practice that how the soil behaves due to repeated loads and the necessary precautions to be taken accordingly. Turkey is one of the most important seismic regions in Europe and earthquake studies to be conducted in this area are intended to reduce the damage as a result of taking the necessary measures. To determine the properties of soils under dynamic loads, stress-controlled dynamic triaxial and resonant column tests can be performed. In this study, these experiments were implemented in the laboratory on the clayey sand soil samples obtained from Bilecik Söğüt. To evaluate the effects of the confining pressure and rate of loading on the dynamic behavior of soils, samples were dynamically loaded by different rates at varying confining pressures. As a result, the changes in stress-strain properties of soils under dynamic loads were investigated. The alteration in behavior in terms of modulus reduction and damping ratios was obtained to vary a lot with the change of the lateral pressure on soil along with the frequency of the load.

Axial compression behavior of double-skinned composite tubular columns under pure compression on concrete cores

  • Lee, Jeonghwa;Byun, Namju;Kang, Young Jong;Won, Deok Hee;Kim, Seungjun
    • Steel and Composite Structures
    • /
    • 제43권4호
    • /
    • pp.431-445
    • /
    • 2022
  • A double-skinned composite tubular (DSCT) column, which is an internally confined concrete-filled tubular column with a hollow section, has been developed for efficient use of materials that reduce self-weight and enhance seismic performance. It exhibits excellent material behavior with ductility owing to the confinement induced by outer and inner steel tubes. This study conducted axial compression tests considering the effects of steel tube thickness and hollow diameter ratios of DSCT columns on the material behavior of confined concrete under pure axial compression on concrete cores. From the axial compression tests, various combinations of outer and inner tube thicknesses and two different hollow section ratios were considered. Additionally, confined concrete material behavior, axial strength, failure modes, and ductility of DSCT columns were evaluated. Based on this study, it was concluded that the tests show a good correlation with peak strength and shapes of nonlinear stress-strain curves presented in literature; however, the thinner outer and inner steel tubes may reduce the ductility of DSCT columns when using thinner outer and inner tubes and higher confined stress levels. Finally, the minimum thickness requirements of the steel tubes for DSCT columns were discussed in terms of strength and ductility of test specimens.

Combined resonant column and cyclic triaxial tests to estimate the dynamic behavior of undisturbed saturated clayey soils of Adapazarı, Turkey

  • Ersin Guler;Kamil Bekir Afacan
    • Geomechanics and Engineering
    • /
    • 제33권3호
    • /
    • pp.243-259
    • /
    • 2023
  • Turkey is one of the most important earthquake regions in Europe. This region has been exposed to many earthquakes of different magnitudes from past to present. It is of great importance to determine the dynamic properties of the soils for structures to be built in earthquake zones. In order to minimize the damages that may occur, the behavior of the soils under repeated loads should be known and taken into consideration in the design. In this study, 4 different point borings were taken near active fault lines in the North Anatolian fault zone (NAFZ). In order to determine the dynamic parameters of soils, both dynamic triaxial (TRX) and resonant column (RC) tests were carried out on undisturbed samples at every 5 m. As a result of the experiments, Vs and Gmax values were obtained from the field and differences were determined. The dynamic behavior of the soil was examined at varying depths with the comparison of reference models in the literature and compatible results were obtained. Finally, the behavior at the transition region is highlighted. As a result, three shear modulus and dumping ratio models have been proposed for clay soils to be used in different soil conditions.

철근콘크리트 기둥과 철골 보로 이루어진 혼합구조 접합부의 역학적 거동 (Structural Behavior of Joints Consisting of Reinforced Concrete Column and Steel Beam)

  • 김도균;김욱종;이동렬;문정호;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.501-504
    • /
    • 1999
  • Recently, composite structural systems have been developed actively due to its structural advantages of combining different materials. The objective of this paper is to investigate the structural behavior of moment connection in composite structures which consist of steel beams and reinforced concrete columns. In this study, three 1/2 scale joint specimens were tested under reversal loads. The results showed that beam-column joints maintain ductility, strength and exhibit excellent energy-dissipating capacity when subjected to inelastic deformations under reversal load.

  • PDF

합성보-철골기둥 접합부의 내진전단설계 (Seismic Shear Design of Composite Beam-Steel Column Joints)

  • 이승준
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.45-51
    • /
    • 1992
  • Trilinear analytical models representing the behavior of composite beam-steel column joints and seismic shear design method for the joints are presented. Emphasis is placed on the effect of the concrete slab on the behavior of the joints. To validate the analytical models, Comparisons with the experimental results are made. Application of the proposed method to seismic shear design of joints improves the seismic resistance of the steel frame with composite slab.

  • PDF

CFT기둥과 H-형강보의 볼트 접합부에 관한 실험적 연구 (An Experimental study on the Bolted Moment Connection between H-Beam and CFT Column)

  • 박순규;노환근
    • 한국강구조학회 논문집
    • /
    • 제10권4호통권37호
    • /
    • pp.789-799
    • /
    • 1998
  • 본 연구의 목적은 CFT-기둥과H-형강보의 볼트를 이용한 접합부의 형식을 제안하는 데 있다. 본 연구에서는 직선형, 굽힘형, U자형, 기성제품 고장력 볼트를 이용한 아홉가지 형식의 접합부를 제안하였다. 이 아홉가지의 접합부 형식에 대하여 단순 인장 실험을 수행하였으며, 이 실험 결과에 의해 성능이 우수한 형태를 선정하여 단순 휨 실험을 수행하였다. 그리고 단순 휨 실험을 통해 보-기둥 접합부의 구조적인 거동을 비교 분석하였다. 단순 휨 실험의 분석 결과, 휨 접합부의 구조성능은 상당히 우수한 것으로 나타났으나 시공시 해결되어야 할 사항들이 남아 있는 것으로 나타났다.

  • PDF