• Title/Summary/Keyword: color-titanium products

Search Result 6, Processing Time 0.019 seconds

Color Evolution in Anodized Titanium (열산화에 의한 티타늄의 발색효과)

  • 송오성;홍석배;이정임
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.5
    • /
    • pp.325-329
    • /
    • 2002
  • We investigated the oxide thickness and color evolution with the oxidation temperatures between $370^{\circ}C$ and $950^{\circ}C$ for 30 minutes in an electric furnace. Oxide thickness and color index were determined by cross sectional field emission scanning electron microscopy (FESEM) images and digital camera images, respectively. We confirmed that thermal oxidation was suitable for the mass production of color-titanium products, while coloring process window was narrow compared with anodizing oxidation process.

Development of Advanced Manufacturing Process of Light Interference Pearl Pigment (광 간섭 펄 안료의 신규 제조 공정 개발)

  • Son, Hong Ha;Yu, Jae Won;Kim, Kyung Seob
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.2
    • /
    • pp.121-126
    • /
    • 2015
  • In general, the pearlescent pigment is a pigment which was used for optical characteristics like pearl, rainbow and metallic luster. Titanium dioxide coated mica plate developed by DuPont in 1965 is currently being used as a main part of pearlescent pigment for cosmetics. Although the smooth and clear surface substrate laminated with 2 ~ 3 ingredients is thicker than a previous monolayer coated substrate, it has been applied for cosmetics as the optical interference powder to realize stronger shine and brighter interference color than monolayer one. In this study, we developed a new optical interference powder with thinner and higher chroma than a current pearlescent pigment for the strong luster and bright interference color. It was prepared from the manufacturing process, in which the coated titanium dioxide precursor was changed and crystallized by coating and heat treatment process with a half of dividing the coated amount of titanium dioxide. We confirmed the dense coating of titanium dioxide grain with Scanning Electron Microscope and measured superior crystallization degree compared with a monolayer coated pearlescent pigment by X-ray Diffraction. It is concluded that our new pearlescent pigment had higher reflectivity of light and stronger interference color than previous products.

Ti Deposition using Atmospheric Pressure Plasma Technology (상압플라즈마 공정을 이용한 Ti 증착 연구)

  • Kim, Kyoung-Bo
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.2
    • /
    • pp.149-156
    • /
    • 2022
  • In this paper, it was attempted to form a titanium (Ti: Titanium) thin film using the atmospheric pressure plasma process technology for the conductor, which is the main component of the optical sensor. The atmospheric plasma equipment was remodeled. A 4-inch Ti target for sputter was etched using CF4 gas, and the by-product was coated on a glass sample. These by-products were formed up to about 2 cm, and could be divided into 15 areas according to color. Surface shape and constituent elements were analyzed using scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), respectively. Electrical properties using 4-point probe equipment were also measured. If the process is performed by positioning the sample at about 4.5 mm to 5 mm from the target, a uniform Ti thin film will be deposited. However, it was found that the thin film contained a significant amount of fluorine, which greatly affects the electrical properties of the thin film. Therefore, additional experiments and studies should be performed to remove or minimize fluorine during deposition.

Studies on the substitution pigment of Dan-Chung (양록단청 대체안료 개발 연구)

  • Kim, Sa-Dug;Kim, Soon-Kwan;Hong, Jung-Ki;Kang, Da-Il;Lee, Myong-Hee
    • 보존과학연구
    • /
    • s.20
    • /
    • pp.121-137
    • /
    • 1999
  • Among pigment used at work of Dan-Chung, Emerald Green is specific illuminating fluorescent light of green. It is very difficult to change other organic or inorganic pigment. All of the internal high class pigment has rare light. But Emerald Green is superior to fresh color and stability out of industrial chemical products. It forms over 50% of quantity and importance of a pattern painting. Emerald Green prohibited to produce because of its toxicpollutants, so required to changing pigment development. It is characterized to excellent color, convenient work, economical, against-sunlight, against-air pollutant and durability. The result of a test is follows; 1. We are investigated into producing internal natural Emerald Green, import external pigment and industrial synthesis method etc. but unable to buy because of its toxic pollutant. 2. We are made six samples by yellowish and green is hpigment mixing. We tested on against sunlight and air pollutant. The best mixing ratio is follows. Titanium Dioxide R760 : 18g- Chalk, White Wash : 10g- Permanent Yellow : 7g- Cyanine Green : 8g- Chrome Yellow : 3g- Resin(Vehicle) : Acryl Emulsion(Styrene + 2-Ethyl HexylAcrylate + Methyl Meth Acrylate) 8%

  • PDF

Surface Characteristics of Type II Anodized Ti-6Al-4V Alloy for Biomedical Applications

  • Lee, Su-Won;Jeong, Tae-Gon;Yang, Jae-Ung;Jeong, Jae-Yeong;Park, Gwang-Min;Jeong, Yong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.77-77
    • /
    • 2017
  • Titanium and its alloys offer attractive properties in a variety of applications. These are widely used for the field of biomedical implants because of its good biocompatibility and high corrosion resistance. Titanium anodizing is often used in the metal finishing of products, especially those can be used in the medical devices with dense oxide surface. Based on SAE/AMS (Society of Automotive Engineers/Aerospace Material Specification) 2488D, it has the specification for industrial titanium anodizing that have three different types of titanium anodization as following: Type I is used as a coating for elevated temperature forming; Type II is used as an anti-galling coating without additional lubrication or as a pre-treatment for improving adherence of film lubricants; Type III is used as a treatment to produce a spectrum of surface colours on titanium. In this study, we have focused on Type II anodization for the medical (dental and orthopedic) application, the anodized surface was modified with gray color under alkaline electrolyte. The surface characteristics were analyzed with Focused Ion Beam (FIB), Scanning Electron Microscopy (SEM), surface roughness, Vickers hardness, three point bending test, biocompatibility, and corrosion (potentiodynamic) test. The Ti-6Al-4V alloy was used for specimen, the anodizing procedure was conducted in alkaline solution (NaOH based, pH>13). Applied voltage was range between 20 V to 40 V until the ampere to be zero. As results, the surface characteristics of anodic oxide layer were analyzed with SEM, the dissecting layer was fabricated with FIB method prior to analyze surface. The surface roughness was measured by arithmetic mean deviation of the roughness profile (Ra). The Vickers hardness was obtained with Vickers hardness tester, indentation was repeated for 5 times on each sample, and the three point bending property was verified by yield load values. In order to determine the corrosion resistance for the corrosion rate, the potentiodynamic test was performed for each specimen. The biological safety assessment was analyzed by cytotoxic and pyrogen test. Through FIB feature of anodic surfaces, the thickness of oxide layer was 1.1 um. The surface roughness, Vickers hardness, bending yield, and corrosion resistance of the anodized specimen were shown higher value than those of non-treated specimen. Also we could verify that there was no significant issues from cytotoxicity and pyrogen test.

  • PDF

The Effect of Blue Light Interception and SPF Boosting of Sunscreen Prepared with Bandgap-controlled TiO2 (밴드갭이 제어된 TiO2 를 이용한 자외선 차단제의 블루라이트 차단 및 SPF 부스팅 효과)

  • Sung Eun Wang;Jung Kyung Yoon;Gui Su Chung;Sung Bong Kye;Ho Sik Rho;Dae Soo Jung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.2
    • /
    • pp.159-167
    • /
    • 2023
  • Titanium dioxide (TiO2) is commonly used in sunscreen formulations to protect the skin surface and prevent the penetration of harmful ultraviolet (UV) rays by the physical scattering action of light. However, a disadvantage of using TiO2 is that it can cause white turbidity when used on skin due to its inactive mineral ingredient. In addition, when TiO2 particles are reduced to nanosize to eliminate opacity, they can increase the transmittance of visible light and reduce whitening, but may lead to serious skin problems, such as allergic inflammation. To overcome these issues, the bandgap of TiO2 was controlled by adjusting the amount of oxygen defect and nitrogen amount, resulting in color TiO2 tailored to the skin. This innovative technology can reduce the whitening phenomenon and effectively block blue light, which is known to cause skin aging by inducing active oxygen. The bandgap controlled TiO2 compounds proposed in this study are hypoallergenic, broad-spectrum, and environmentally friendly. Furthermore, these compounds have been shown to significantly enhance sun protection factor (SPF) of sunscreens, demonstrating their compatibility with blue light blocking products.