• 제목/요약/키워드: color-texture histograms

검색결과 17건 처리시간 0.019초

Texture superpixels merging by color-texture histograms for color image segmentation

  • Sima, Haifeng;Guo, Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권7호
    • /
    • pp.2400-2419
    • /
    • 2014
  • Pre-segmented pixels can reduce the difficulty of segmentation and promote the segmentation performance. This paper proposes a novel segmentation method based on merging texture superpixels by computing inner similarity. Firstly, we design a set of Gabor filters to compute the amplitude responses of original image and compute the texture map by a salience model. Secondly, we employ the simple clustering to extract superpixles by affinity of color, coordinates and texture map. Then, we design a normalized histograms descriptor for superpixels integrated color and texture information of inner pixels. To obtain the final segmentation result, all adjacent superpixels are merged by the homogeneity comparison of normalized color-texture features until the stop criteria is satisfied. The experiments are conducted on natural scene images and synthesis texture images demonstrate that the proposed segmentation algorithm can achieve ideal segmentation on complex texture regions.

블록단위 특성분류를 이용한 컬러영상 검색 (Color Image Retrieval Using Block-based Classification)

  • 류명분;우석훈;박동권;원치선
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 1996년도 학술대회
    • /
    • pp.63-66
    • /
    • 1996
  • In this paper, we propose a new content-based color image retrieval algorithm. The algorithm makes use of two features; colors as global features and block classification results as local features. More specifically, we obtain R, G, B color histograms and classify nonoverlapping small image blocks into texture, monotone, and various edges, then using these histograms and classification results were make a similarity measure. Experimental results show that retrieval rate of the proposed algorithm is higher than the previous method.

  • PDF

칼라와 에지 히스토그램 기술자를 이용한 영상 마이닝 향상 기법 (The Usage of Color & Edge Histogram Descriptors for Image Mining)

  • 안성옥;박동원
    • 컴퓨터교육학회논문지
    • /
    • 제7권5호
    • /
    • pp.111-120
    • /
    • 2004
  • 영상의 칼라, 텍스쳐, 오브젝트의 형체 등과 같은 하위 수준의 특징을 표현할 수 있는 기술자를 MPEG-7 표준에서 규정하고 있다. 하지만, 각각의 기술자를 따로 분석함으로써는 성능 향상에 불충분한 점이 있었다. 본 논문에서는 칼라 기술자와 텍스쳐 기술자를 결합하여 영상검색의 성능을 향상시키는 방법을 제안한다. MPEG-7 표준에서 정의한 $l_{1}$-norm방법보다, 본 논문에서는 칼라 히스토그램의 경우 코사인 근사도 계수를, 에지 히스토그램의 경우 유클리디언 디스턴스를 적용 실험하여 진일보한 결과를 도출할 수 있었다.

  • PDF

Spatial Histograms for Region-Based Tracking

  • Birchfield, Stanley T.;Rangarajan, Sriram
    • ETRI Journal
    • /
    • 제29권5호
    • /
    • pp.697-699
    • /
    • 2007
  • Spatiograms are histograms augmented with spatial means and covariances to capture a richer description of the target. We present a particle filtering framework for region-based tracking using spatiograms. Unlike mean shift, the framework allows for non-differentiable similarity measures to compare two spatiograms; we present one such similarity measure, a combination of a recent weighting scheme and histogram intersection. Experimental results show improved performance with the new measure as well as the importance of global spatial information for tracking. The performance of spatiograms is compared with color histograms and several texture histogram methods.

  • PDF

Color Similarity Definition Based on Quantized Color Histogram for Clothing Identification

  • Choi, Yoo-Joo;Moon, Nam-Mee
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.396-399
    • /
    • 2009
  • In this paper, we present a method to define a color similarity between color images using Octree-based quantization and similar color integration. The proposed method defines major colors from each image using Octree-based quantization. Two color palettes to consist of major colors are compared based on Euclidean distance and similar color bins between palettes are matched. Multiple matched color bins are integrated and major colors are adjusted. Color histogram based on the color palette is constructed for each image and the difference between two histograms is computed by the weighted Euclidean distance between the matched color bins in consideration of the frequency of each bin. As an experiment to validate the usefulness, we discriminated the same clothing from CCD camera images based on the proposed color similarity analysis. We retrieved the same clothing images with the success rate of 88 % using only color analysis without texture analysis.

  • PDF

내용기반 이미지 검색을 위한 색상, 텍스쳐, 에지 기능의 통합 (Integrating Color, Texture and Edge Features for Content-Based Image Retrieval)

  • 마명;박동원
    • 감성과학
    • /
    • 제7권4호
    • /
    • pp.57-65
    • /
    • 2004
  • 본 논문에서는 color, texture, shape의 정보를 통합 이용하여 내용기반 영상검색 시스템의 성능을 향상시키는 기법을 고찰하였다. 먼저 영상에 내재되어 있는 color를 분석 추출하여 몇 개의 대표색으로 요약 표현한 다음, 이를 활용한 근사치 측정도를 고안하였다. Texture정보 분석에 있어서는 영상의 주축 행렬 데이터를 통계적 접근 방법으로 추출하였다. Edge분석의 방법으로는 Edge 막대그래프에서 색상변환, 양자화, 필터링에 관련된 정보를 선행처리 후 Edge 정보를 추출하였다. 마지막으로, 본 연구의 결과인 내용기반 영상검색 시스템의 효율성을 precision-recall 분석과 실험적 결과를 통하여 입증하였다.

  • PDF

색상특징과 웨이블렛 기반의 질감특징을 이용한 영상 검색 (Content-based Image Retrieval using the Color and Wavelet-based Texture Feature)

  • 박종현;박순영;조완현;오일석
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제30권2호
    • /
    • pp.125-133
    • /
    • 2003
  • 본 논문에서는 색상과 웨이블렛 기반의 질감 특징들을 사용한 효율적인 내용기반 영상검색 방법을 제안하였다. 색상특징은 전체 영상으로부터 추출된 soft-히스토그램이 사용되며 질감 특징으로는 웨이블렛 변환의 공간 주파수 분석을 통하여 얻어진 고대역 부밴드로부터 추출된 불변 모우멘트가 이용된다. CTBTR이라 불리는 검색시스템은 질의 영상에 대한 효율적인 영상 검색을 위하여 두 단계의 유사성 정합을 수행하는데 첫 번째 정합 단계에서는 간단한 색상 히스토그램을 사용하여 질의 영상과 유사하지 않은 영상을 제거하여서 검색대상의 수를 줄이며, 두 번째 정합 단계에서는 첫 번째 단계에서 선별된 후보영상에 웨이블렛 기반의 질감특징을 적용하여 질의 영상과 유사한 영상을 검색한다. 실험결과 제안된 알고리즘이 기존의 방법보다 검색에 있어서 효율적인 계산처리와 정확한 검색을 수행하여 향상된 결과를 보여 주었다.

색상 대비와 텍스처 정보를 이용한 효과적인 스테레오 영상 중요도 맵 추출 (Extraction of an Effective Saliency Map for Stereoscopic Images using Texture Information and Color Contrast)

  • 김성현;강행봉
    • 한국멀티미디어학회논문지
    • /
    • 제18권9호
    • /
    • pp.1008-1018
    • /
    • 2015
  • In this paper, we propose a method that constructs a saliency map in which important regions are accurately specified and the colors of the regions are less influenced by the similar surrounding colors. Our method utilizes LBP(Local Binary Pattern) histogram information to compare and analyze texture information of surrounding regions in order to reduce the effect of color information. We extract the saliency of stereoscopic images by integrating a 2D saliency map with depth information of stereoscopic images. We then measure the distance between two different sizes of the LBP histograms that are generated from pixels. The distance we measure is texture difference between the surrounding regions. We then assign a saliency value according to the distance in LBP histogram. To evaluate our experimental results, we measure the F-measure compared to ground-truth by thresholding a saliency map at 0.8. The average F-Measure is 0.65 and our experimental results show improved performance in comparison with existing other saliency map extraction methods.

지역 색차 기반의 히스토그램 정교화에 의한 영상 검색 (Image Retrieval Using Histogram Refinement Based on Local Color Difference)

  • 김민기
    • 한국멀티미디어학회논문지
    • /
    • 제18권12호
    • /
    • pp.1453-1461
    • /
    • 2015
  • Since digital images and videos are rapidly increasing in the internet with the spread of mobile computers and smartphones, research on image retrieval has gained tremendous momentum. Color, shape, and texture are major features used in image retrieval. Especially, color information has been widely used in image retrieval, because it is robust in translation, rotation, and a small change of camera view. This paper proposes a new method for histogram refinement based on local color difference. Firstly, the proposed method converts a RGB color image into a HSV color image. Secondly, it reduces the size of color space from 2563 to 32. It classifies pixels in the 32-color image into three groups according to the color difference between a central pixel and its neighbors in a 3x3 local region. Finally, it makes a color difference vector(CDV) representing three refined color histograms, then image retrieval is performed by the CDV matching. The experimental results using public image database show that the proposed method has higher retrieval accuracy than other conventional ones. They also show that the proposed method can be effectively applied to search low resolution images such as thumbnail images.

엔트로피에 기반한 영상분할을 이용한 영상검색 (Image Retrieval Using Entropy-Based Image Segmentation)

  • 장동식;유헌우;강호증
    • 제어로봇시스템학회논문지
    • /
    • 제8권4호
    • /
    • pp.333-337
    • /
    • 2002
  • A content-based image retrieval method using color, texture, and shape features is proposed in this paper. A region segmentation technique using PIM(Picture Information Measure) entropy is used for similarity indexing. For segmentation, a color image is first transformed to a gray image and it is divided into n$\times$n non-overlapping blocks. Entropy using PIM is obtained from each block. Adequate variance to perform good segmentation of images in the database is obtained heuristically. As variance increases up to some bound, objects within the image can be easily segmented from the background. Therefore, variance is a good indication for adequate image segmentation. For high variance image, the image is segmented into two regions-high and low entropy regions. In high entropy region, hue-saturation-intensity and canny edge histograms are used for image similarity calculation. For image having lower variance is well represented by global texture information. Experiments show that the proposed method displayed similar images at the average of 4th rank for top-10 retrieval case.