• Title/Summary/Keyword: color segmentation

Search Result 544, Processing Time 0.036 seconds

An Edge Preserving Color Image Segmentation Using Mean Shift Algorithm and Region Merging Method (Mean Shift 알고리즘과 영역 병합 방법을 이용한 경계선 보존 컬러 영상 분할)

  • Kwak Nae-Joung;Kwon Dong-Jin;Kim Young-Gil
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.9
    • /
    • pp.19-27
    • /
    • 2006
  • Mean shift procedure is applied for the data points in the joint spatial-range domain and achieves a high quality. However, a color image is segmented differently according to the inputted spatial parameter or range parameter and the demerit is that the image is broken into many small regions in case of the small parameter. In this paper, to improve this demerit, we propose the method that groups similar regions using region merging method for over-segmented images. The proposed method converts a over-segmented image in RGB color space into in HSI color space and merges similar regions by hue information. Here, to preserve edge information, the region merge constraints are used to decide whether regions are merged or not. After then, we merge the regions in RGB color space for non-processed regions in HSI color space. Experimental results show the superiority in region's segmentation results.

  • PDF

A Study on Game Contents Classification Service Method using Image Region Segmentation (칼라 영상 객체 분할을 이용한 게임 콘텐츠 분류 서비스 방안에 관한 연구)

  • Park, Chang Min
    • Journal of Service Research and Studies
    • /
    • v.5 no.2
    • /
    • pp.103-110
    • /
    • 2015
  • Recently, Classification of characters in a 3D FPS game has emerged as a very significant issue. In this study, We propose the game character Classification method using Image Region Segmentation of the extracting meaningful object in a simple operation. In this method, first used a non-linear RGB color model and octree color quantization scheme. The input image represented a less than 20 quantized color and uses a small number of meaningful color histogram. And then, the image divided into small blocks, calculate the degree of similarity between the color histogram intersection and adjacent block in block units. Because, except for the block boundary according to the texture and to extract only the boundaries of the object block. Set a region by these boundary blocks as a game object and can be used for FPS game play. Through experiment, we obtain accuracy of more than 80% for Classification method using each feature. Thus, using this property, characters could be classified effectively and it draws the game more speed and strategic actions as a result.

Semantic Segmentation of Indoor Scenes Using Depth Superpixel (깊이 슈퍼 픽셀을 이용한 실내 장면의 의미론적 분할 방법)

  • Kim, Seon-Keol;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.3
    • /
    • pp.531-538
    • /
    • 2016
  • In this paper, we propose a novel post-processing method of semantic segmentation from indoor scenes with RGBD inputs. For accurate segmentation, various post-processing methods such as superpixel from color edges or Conditional Random Field (CRF) method considering neighborhood connectivity have been used, but these methods are not efficient due to high complexity and computational cost. To solve this problem, we maximize the efficiency of post processing by using depth superpixel extracted from disparity image to handle object silhouette. Our experimental results show reasonable performances compared to previous methods in the post processing of semantic segmentation.

Region Segmentation of a Color Image using a Distributed Genetic Algorithm (분산 유전자 알고리즘을 이용한 컬러 이미지의 영역분할)

  • 조찬윤;김상균
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.5
    • /
    • pp.470-478
    • /
    • 2000
  • Color images from various application areas have their own characteristics. Practical segmentation systems need specialized methods to death with the characteristics. In this paper. we propose a distributed genetic algorithm based segmentation method for color breast carcinoma cell images. To extract positive nuclei and negative nuclei from the cell images, a distributed genetic algorithm with improved genetic operations and an evaluation function is used. As initial values, representative colors from images are introduced to work well with the cell images. A test to verify the validity of the proposed method shows well-segmented images. This result suggests that the method is pertinent to be but into practical use for the images haying limited objects with limited colors.

  • PDF

Coordination of Smart Costume based on Complementary Colors using Image Segmentation (이미지 세그먼테이션을 이용한 보색 기반의 스마트 의상 코디네이션)

  • Kim, Hye-Suk;Kim, Ho-Da
    • Journal of Digital Contents Society
    • /
    • v.19 no.8
    • /
    • pp.1453-1462
    • /
    • 2018
  • In this paper, we look photographes of costumes and composed them as image files by extracting only costume part of the photograph excluding the background part. And we calculated representative color value to implement smart costume coordination program using complementary colors corresponding to representative color values in the costume area. And then, We have solved the problem of over-segmentation caused by extracting the costumes area by applying an anisotropic diffusion algorithm that can remove the noise of the image and flatten the gradient. In order to satisfy users' various needs, we plan to add not only complementary colors coordination but also more various color scheme.

Multi-Level Segmentation of Infrared Images with Region of Interest Extraction

  • Yeom, Seokwon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.246-253
    • /
    • 2016
  • Infrared (IR) imaging has been researched for various applications such as surveillance. IR radiation has the capability to detect thermal characteristics of objects under low-light conditions. However, automatic segmentation for finding the object of interest would be challenging since the IR detector often provides the low spatial and contrast resolution image without color and texture information. Another hindrance is that the image can be degraded by noise and clutters. This paper proposes multi-level segmentation for extracting regions of interest (ROIs) and objects of interest (OOIs) in the IR scene. Each level of the multi-level segmentation is composed of a k-means clustering algorithm, an expectation-maximization (EM) algorithm, and a decision process. The k-means clustering initializes the parameters of the Gaussian mixture model (GMM), and the EM algorithm estimates those parameters iteratively. During the multi-level segmentation, the area extracted at one level becomes the input to the next level segmentation. Thus, the segmentation is consecutively performed narrowing the area to be processed. The foreground objects are individually extracted from the final ROI windows. In the experiments, the effectiveness of the proposed method is demonstrated using several IR images, in which human subjects are captured at a long distance. The average probability of error is shown to be lower than that obtained from other conventional methods such as Gonzalez, Otsu, k-means, and EM methods.

An Epipolar Rectification for Object Segmentation (객체분할을 위한 에피폴라 Rectification)

  • Jeong, Seung-Do;Kang, Sung-Suk;CHo, Jung-Won;Choi, Byung-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.83-91
    • /
    • 2004
  • An epipolar rectification is the process of transforming the epipolar geometry of a pair of images into a canonical form. This is accomplished by applying a homography to each image that maps the epipole to a predetermined point. In this process, rectified images transformed by homographies must be satisfied with the epipolar constraint. These homographies are not unique, however, we find out homographies that are suited to system's purpose by means of an additive constraint. Since the rectified image pair be a stereo image pair, we are able to find the disparity efficiently. Therefore, we are able to estimate the three-dimensional information of objects within an image and apply this information to object segmentation. This paper proposes a rectification method for object segmentation and applies the rectification result to the object segmentation. Using color and relative continuity of disparity for the object segmentation, the drawbacks of previous segmentation method, which are that the object is segmented to several region because of having different color information or another object is merged into one because of having similar color information, are complemented. Experimental result shows that the disparity of result image of proposed rectification method have continuity about unique object. Therefore we have confirmed that our rectification method is suitable to the object segmentation.

Comparisons of Color Spaces for Shadow Elimination (그림자 제거를 위한 색상 공간의 비교)

  • Lee, Gwang-Gook;Uzair, Muhammad;Yoon, Ja-Young;Kim, Jae-Jun;Kim, Whoi-Yul
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.5
    • /
    • pp.610-622
    • /
    • 2008
  • Moving object segmentation is an essential technique for various video surveillance applications. The result of moving object segmentation often contains shadow regions caused by the color difference of shadow pixels. Hence, moving object segmentation is usually followed by a shadow elimination process to remove the false detection results. The common assumption adopted in previous works is that, under the illumination variation, the value of chromaticity components are preserved while the value of intensity component is changed. Hence, color transforms which separates luminance component and chromaticity component are usually utilized to remove shadow pixels. In this paper, various color spaces (YCbCr, HSI, normalized rgb, Yxy, Lab, c1c2c3) are examined to find the most appropriate color space for shadow elimination. So far, there have been some research efforts to compare the influence of various color spaces for shadow elimination. However, previous efforts are somewhat insufficient to compare the color distortions under illumination change in diverse color spaces, since they used a specific shadow elimination scheme or different thresholds for different color spaces. In this paper, to relieve the limitations of previous works, (1) the amount of gradients in shadow boundaries drawn to uniform colored regions are examined only for chromaticity components to compare the color distortion under illumination change and (2) the accuracy of background subtraction are analyzed via RoC curves to compare different color spaces without the problem of threshold level selection. Through experiments on real video sequences, YCbCr and normalized rgb color spaces showed good results for shadow elimination among various color spaces used for the experiments.

  • PDF

Face Detection by Eye Detection with Progressive Thresholding

  • Jung, Ji-Moon;Kim, Tae-Chul;Wie, Eun-Young;Nam, Ki-Gon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1689-1694
    • /
    • 2005
  • Face detection plays an important role in face recognition, video surveillance, and human computer interface. In this paper, we present a face detection system using eye detection with progressive thresholding from a digital camera. The face candidate is detected by using skin color segmentation in the YCbCr color space. The face candidates are verified by detecting the eyes that is located by iterative thresholding and correlation coefficients. Preprocessing includes histogram equalization, log transformation, and gray-scale morphology for the emphasized eyes image. The distance of the eye candidate points generated by the progressive increasing threshold value is employed to extract the facial region. The process of the face detection is repeated by using the increasing threshold value. Experimental results show that more enhanced face detection in real time.

  • PDF