• Title/Summary/Keyword: color pigments

Search Result 425, Processing Time 0.028 seconds

Diagnosis of Coloration Status and Scientific Analysis for Pigments to Used Large Buddhist Painting(Gwaebultaeng) in Tongdosa Temple (통도사 괘불탱의 채색상태 및 사용 안료의 과학적 분석)

  • Lee, Jang Jon;Ahn, Ji Yoon;Yoo, Young Mi;Lee, Kyeong Min;Han, Min Su
    • Journal of Conservation Science
    • /
    • v.33 no.6
    • /
    • pp.431-442
    • /
    • 2017
  • The purpose of this study is to reveal that coloring status and the degree of damage and the kinds of pigments used in large buddhist painting (Gwaebultaeng) of Tongdosa temple using a scientific analysis methods. It was observed that the physical damage patterns of the Gwaebultaeng were folding, lifting, fading, and peeling. Lead red, cinnabar and organic pigments were used as red pigments. Malachite and atacamite were used as green pigments, azulite and lazulite were blue pigments, lead white and talc were white pigment. It is estimated that overlapping organic pigments on the lead white were used as the yellow pigment and carbon was the black pigment. Through the analysis of the particle status of the pigments, it was confirmed that different types of raw materials were used for the green pigment, and the crystal form was easily distinguishable. Also, the dark blue color and the light blue color differed from each other depending on the size and shape of the raw material particles. Yellow and purple colors were organic pigments which did not have a graininess. The yellow and purple colors were organic pigments free from the graininess, and the pigments of dark red pigments was found to be mixed with the orange color pigments and carbon particles.

Analysis of Dancheong pigments at the Nahanjeon Songkwangsa Temple, Wanju (완주 송광사 나한전 단청안료 분석)

  • Hong, Jong-Ouk;Lee, Jang-jon
    • 보존과학연구
    • /
    • s.34
    • /
    • pp.102-108
    • /
    • 2013
  • The purpose of this investigation is to Dancheong documentary project of Tangible cultural in Jeollabukdo. The colored pigments of Nahanjeon Hall in Songkwangsa Temple analyzed and composition and repair period for each pigments were compared. The result are that blue color is Ultramarine blue($Na_6Al_6Si_6O_{24}S_4$), green color is Yangrok($Cu(C_2H_3O_2)_2{\cdot}3Cu(AsO_2)_3$), orange color is Jangdan($Pb_3O_4$), yellow color is Chrome yellow($PbCrO_4$). It is difficult to distinguishable from coloring period by analysis of pigments of Nahanjeon Hall.

  • PDF

Development of Pigment Coated Paper Recognizable With UV Light (자외선 램프로 식별 가능한 안료코팅용지 개발)

  • Kim, Sun-Kyung;Cho, Byoung-Uk;Lee, Yong-Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.4
    • /
    • pp.76-81
    • /
    • 2011
  • This study was carried out in order to develop a speciality functional coated paper, which can be recognized under a ultraviolet lamp. The special fluorescent whitening agent (FWA) which absorbs ultraviolet light (397~410 nm) and emits it as yellowish light (570~500nm) was used. The special FWA was applied in a coating color in two ways: (1) direct application to a coating color as a FWA; (2) application on pigment surface, drying it and application it as a fluorescence whitening pigments (colored pigments). The effects of the special FWA on coating color properties were tested and the distribution of colored pigments in coated paper was evaluated under a ultraviolet lamp. The results showed that the colored pigments didn't affect on coating color properties. Experimental results showed the possibility of producing a security coated paper using the special FWA. To produce a speciality functional paper, it was found to be proper to apply the special FWA in the form of colored pigment.

Analysis of Paint Pigments on King's Silk Ceremonial Robe with Nine Symbols (은조사 구장복의 채색안료 분석)

  • Yun, Eunyoung;Kang, Hyungtae
    • Conservation Science in Museum
    • /
    • v.15
    • /
    • pp.66-77
    • /
    • 2014
  • A gujangbok is a king's silk ceremonial robe embroidered with nine symbols that represent the essential virtues that a king needs to govern his country. The National Museum of Korea currently own a gujangbok worn by King Gojong in the late Joseon Dynasty. The robe is painted with various colors, including red, yellow, blue, green, and gray. μ-XRF and analysis was conducted on the pigments, and it was found that the red color was made from cinnabar, the yellow color was gold and brass, the blue color was a blue organic pigment and white lead, the green color was a synthetic pigment composed of copper and arsenic, and the gray color pigment was silver. Also, the pigments were compared to those used to make the patterns of a queen's ceremonial robe and a front cloth panel, both made around the same time and also owned by the National Museum of Korea. The comparative analysis revealed clear differences and similarities between the various pigments. The resulting data expect to serve as a useful foundation research for future studying of the pigments used by the Joseon royal court in the late nineteenth century.

A Study of Greenish Pigments from Rhodopseudomonas viridis by Acetone Extraction: Characteristics of Potential Food Colorant (Acetone 추출한 Rhodopseudomonas viridis 녹색색소에 대한 연구: 식용색소로서의 일반적 성질)

  • Kim, Yong-Hwan;Lee, Sang-Seob
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.93-97
    • /
    • 1994
  • A study of physical and chemical characteristics of pigments from Rhodopseudomonas viridis DSM 133 was carried out for development of natural greenish colorant. Through visible absorption scanning, it showed three main absorption peaks at 378, 414 and 677 nm with three minor peaks at 510, 540 and 618nm, and it was shown to be greenish color. These pigments were more stabilized in alkaline solutions than in acid of between pH 6 and 9, and it was shown to be stabilized at the temperature below $40^{\circ}C$. In the presence of light and oxygen, the stability of pigments rapidly degraded, and it became unstable in the presence of metal ion such as $Fe^{3+}$ and $Al^{3+}$. But in the presence of $Cu^{2+}$ were very stable. On the result of TLC analysis, pigments were shown to be composed of four color fractions and main color fractions were F-4 and F-2.

  • PDF

Detection of Spurious Jindo Hongju

  • Choi, Kap-Seong;Song, Bo-Hyeon;Kim, Jung-Ho
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 1996.04a
    • /
    • pp.25-25
    • /
    • 1996
  • ;Jindo Hongju is an unique red-colored traditional distilled wine of Korea. The unique attractive color of Jindo Hongju is due to the pigments of gromwell (Lithospermum erythrorhizon) root, derivatives of naphtoquinone such as shikonin and acetylshikonin. Which are extracted during the distillation process. The attractive color of the gromwell pigments is easily changed to dark red or to brown causing deterioration of the Quality of Jindo Hongju. Due to the discoloration of the pigments and to the limited supply of gromwell roots, some brewers manufacture spurious Jindo Hongju using artificial colorants. This study was performed to devise a simple method of detecting spurious Jindo Hongju products. The color of the gromwell pigments was greatly affected by pH change and the change could be demonstrated by the change of the absorption spectrum. At pH 4.0 the normal pH of Jindo Hongju, the absorption spectra of gromwell pigments and genuine Hongju products showed an absorption maximum of 520 nm. The absorption maximum was shifted to 570 nm and to 616 nm as the pH was raised to 7.0 and 11.0 respectively. This transition due to the pH change was also demonstrated on em chromaticity diagram. The characteristic transition due to pH change of gromwell pigment solution was not observed with an artificial colorant (red No.2) which was suspected to be used in the manufacture of imitation products. The absorption spectra of most of the Jindo Hongju collected from the market were similar to that of the gromwell pigments and showed the characteristic transition due to pH change with the addition of NaOH. However, with a few of the products, the absorption spectra was similar to that of the artificial colorant and the characteristic transition due to pH change was not observed, indicating these products might have been forged. The result of study suggests that the transition of the absorption spectrum and the change of the color due to pH change be used for the detection of imitation products. Farther more, since, at pH above 9.0, the color of the gromwell pigments and genuine Jindo Hongju could be visually differentiated from that of the artificial colorant and forged products, it might be possible that the forged products be easily detected by raising the pH to above 9.0 and visually comparing the color with that of the gromwell pigment at the same pH.me pH.

  • PDF

Characteristics of genes in carotenoid cocoon color, Bombyx mori L.

  • Lee, Ju-Han;Kang, Min-Uk;Park, Kwan-Ho;Nho, Si-Kab
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.35 no.2
    • /
    • pp.71-76
    • /
    • 2017
  • The cocoon's color of silkworm, Bombyx mori L. is usually white. But some are yellow, flesh and green colors because of modified characteristics. The yellow and flesh cocoons depend on carotenoid pigments, green cocoons are determined by flavonoid pigments. The cocoon's color is affected by the genes controlling penetration process from midgut to coelom and silk gland. Y (Yellow blood, 2-25.6) and I (Yellow-inhibitor, 9-16.2) genes are involved in the penetration process of carotenoid pigments from midgut to coelom, C (Outer-layer yellow cocoon, 12-7.2) and F (Flesh, 6-13.6) genes from coelom to silk gland. Therefore, the carotenoid cocoon's color depends on the genotype Y, I, C and F genes and their combination. Among them, C gene is sympathetic gene, which are known as C, CI and CD. C (Outer-layer yellow cocoon) genes make yellow cocoons on outer-layer and white cocoons on inter-layer, and CI (Inner-layer yellow cocoon) genes do yellow cocoons on inter-layer and dilute yellow cocoons on outer-layer. CD gene is known as making dilute yellow cocoons all layer. In this study, we have checked the dominance relation of C sympathetic genes among carotenoid genes for color cocoons by using strains related to the genes for color cocoons and investigated the aspect that pigments were penetrated in silk gland by action of each gene.

One-Step Enzymatic Synthesis of Blue Pigments from Geniposide for Fabric Dyeing

  • Cho, Y.J.;Kim, S.Y.;Kim, J.;Choe, E.K.;Kim, S.I.;Shin, H.J.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.230-234
    • /
    • 2006
  • In this study, we describe a one-step chemoenzymatic reaction for the production of natural blue pigments, in which the geniposide from Gardenia extracts is transformed by glycosidases to genipin. Genipin is then allowed to react with amino acids, thereby generating a natural blue pigment. The ${\beta}-glycosidases$, most notably Isolase (a variant of ${\beta}-glucanase$), recombinant ${\beta}-glycosidases$, Cellulase T, and amylases, were shown to hydrolyze geniposide to produce the desired pigments, whereas the ${\alpha}-glycosidases$ did not. Among the 20 tested amino acids, glycine and tyrosine were associated with the highest dye production yields. The optimal molar ratio of geniposide to glycine, two reactants relevant to pigment production, was unity The natural blue pigments produced in this study were used to dye cotton, silk, and wool. The color yields of the pigments were determined to be significantly higher than those of other natural dyes. Furthermore, the color fastness properties of these dyes were fairly good, even in the absence of mordant.

Evidence Suggesting that the Deposition of Pigments into Yolks is Independent of Egg Production: Enhanced Pigmentation of Yolks by Feeding Hens with Canthaxanthin Biosynthesized by Microbials (난황 내 색소의 축적은 산란율과 무관함을 제시하는 증거: 균체가 생성하는 Canthaxanthin의 급여에 의해 강화된 난황의 착색)

  • Kim, Ji-Min;Kim, Jong-Jin;Lee, Shi-Hyoung;Choi, Yang-Ho
    • Korean Journal of Poultry Science
    • /
    • v.38 no.3
    • /
    • pp.239-245
    • /
    • 2011
  • Pigments in the diet affect yolk colors. Due to variations in both the bioavailability of pigments in chickens and their amounts occurring in the feed ingredients, concern about egg quality arises in terms of yolk color. In this study, the effects of pigments, produced through cell culture in the laboratory, on yolk colors were determined for 4 weeks in laying hens receiving one of the 6 dietary treatments: control diets containing 1) no synthetic pigments (CON); 2) canthaxanthin (4 ppm) purchased from BASF (BASF); 3) cultured cells so that the diet had canthaxanthin at 4 ppm (CX); 4) cultured cells so that the diet had lycopene at 30 ppm (LP); 5) canthaxanthin (4 ppm) that was purified from cultured cells (SPCX); or 6) lycopene (30 ppm) that was purified from cultured cells. Relation between deposition of pigments into yolks and egg production was also tested. Yolk color of eggs from chickens fed dietary CX was significantly enhanced, which was slightly but significantly below that of BASF. Results from other treatments were lower than those of CX. Deposit rates of pigments into yolks were: BASF > CX > SPCX > LP > SPLP. The amounts of pigments, with the exception of SPLP, in feed were not changed during the storage for 4 weeks at $25^{\circ}C$. Egg production rates varied among treatments during the initial phase of the study but became relatively uniform at the later stage, except for CON and LP groups. The results of the present study indicate that the deposition of pigments into yolks is independent of egg production.