• Title/Summary/Keyword: color edge histogram

Search Result 82, Processing Time 0.022 seconds

Similar Image Retrieval using Color Histogram and Edge Histogram Descriptor (컬러 히스토그램과 에지 히스토그램 디스크립터를 이용한 영상 검색 기법)

  • Jo, Min-Hyuk;Lee, Sang-Geol;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.332-335
    • /
    • 2013
  • In this paper, we propose an image retrieval method using an EHD (Edge Histogram Descriptor) of MPEG-7 and the color histogram. The EHD algorithm can be used to collect the gradient of edge distribution and to find a similar image. However, if you only search the edge gradient without considering the image color, the color shows a weakness. In order to overcome this problem, we use the color histogram and extract the feature to determine whether a similar image. The proposed method shows that the weakness of existing EHD can be overcome by using the color histogram.

  • PDF

e-Catalogue Image Retrieval Using Vectorial Combination of Color Edge (컬러에지의 벡터적 결합을 이용한 e-카탈로그 영상 검색)

  • Hwang, Yei-Seon;Park, Sang-Gun;Chun, Jun-Chul
    • The KIPS Transactions:PartB
    • /
    • v.9B no.5
    • /
    • pp.579-586
    • /
    • 2002
  • The edge descriptor proposed by MPEG-7 standard is a representative approach for the contents-based image retrieval using the edge information. In the edge descriptor, the edge information is the edge histogram derived from a gray-level value image. This paper proposes a new method which extracts color edge information from color images and a new approach for the contents-based image retrieval based on the color edge histogram. The poposed method and technique are applied to image retrieval of the e-catalogue. For the evaluation, the results of image retrieval using the proposed approach are compared with those of image retrieval using the edge descriptor by MPEG-7 and the statistics shows the efficiency of the proposed method. The proposed color edge model is made by combining the R,G,B channel components vectorially and by characterizing the vector norm of the edge map. The color edge histogram using the direction of the color edge model is subsequently used for the contents-based image retrieval.

Video Scene Detection using Shot Clustering based on Visual Features (시각적 특징을 기반한 샷 클러스터링을 통한 비디오 씬 탐지 기법)

  • Shin, Dong-Wook;Kim, Tae-Hwan;Choi, Joong-Min
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.47-60
    • /
    • 2012
  • Video data comes in the form of the unstructured and the complex structure. As the importance of efficient management and retrieval for video data increases, studies on the video parsing based on the visual features contained in the video contents are researched to reconstruct video data as the meaningful structure. The early studies on video parsing are focused on splitting video data into shots, but detecting the shot boundary defined with the physical boundary does not cosider the semantic association of video data. Recently, studies on structuralizing video shots having the semantic association to the video scene defined with the semantic boundary by utilizing clustering methods are actively progressed. Previous studies on detecting the video scene try to detect video scenes by utilizing clustering algorithms based on the similarity measure between video shots mainly depended on color features. However, the correct identification of a video shot or scene and the detection of the gradual transitions such as dissolve, fade and wipe are difficult because color features of video data contain a noise and are abruptly changed due to the intervention of an unexpected object. In this paper, to solve these problems, we propose the Scene Detector by using Color histogram, corner Edge and Object color histogram (SDCEO) that clusters similar shots organizing same event based on visual features including the color histogram, the corner edge and the object color histogram to detect video scenes. The SDCEO is worthy of notice in a sense that it uses the edge feature with the color feature, and as a result, it effectively detects the gradual transitions as well as the abrupt transitions. The SDCEO consists of the Shot Bound Identifier and the Video Scene Detector. The Shot Bound Identifier is comprised of the Color Histogram Analysis step and the Corner Edge Analysis step. In the Color Histogram Analysis step, SDCEO uses the color histogram feature to organizing shot boundaries. The color histogram, recording the percentage of each quantized color among all pixels in a frame, are chosen for their good performance, as also reported in other work of content-based image and video analysis. To organize shot boundaries, SDCEO joins associated sequential frames into shot boundaries by measuring the similarity of the color histogram between frames. In the Corner Edge Analysis step, SDCEO identifies the final shot boundaries by using the corner edge feature. SDCEO detect associated shot boundaries comparing the corner edge feature between the last frame of previous shot boundary and the first frame of next shot boundary. In the Key-frame Extraction step, SDCEO compares each frame with all frames and measures the similarity by using histogram euclidean distance, and then select the frame the most similar with all frames contained in same shot boundary as the key-frame. Video Scene Detector clusters associated shots organizing same event by utilizing the hierarchical agglomerative clustering method based on the visual features including the color histogram and the object color histogram. After detecting video scenes, SDCEO organizes final video scene by repetitive clustering until the simiarity distance between shot boundaries less than the threshold h. In this paper, we construct the prototype of SDCEO and experiments are carried out with the baseline data that are manually constructed, and the experimental results that the precision of shot boundary detection is 93.3% and the precision of video scene detection is 83.3% are satisfactory.

An Image Enhancement Algorithm based on Color Constancy and Histogram Equalization using Edge Region (색채 항상성 방법과 경계 영역 기반 히스토그램 평활화 방법을 이용한 영상의 화질 향상 방법)

  • Cho, Dong-Chan;Kang, Hyung-Sub;Kim, Whoi-Yul
    • Journal of Broadcast Engineering
    • /
    • v.15 no.3
    • /
    • pp.332-345
    • /
    • 2010
  • A unified image enhancement method is proposed for high-resolution image which based on color constancy and histogram equalization using edge region. To speed up the method, smaller image is used when parameters of color constancy and histogram equalization are determined. In the color constancy process, nth-derivative of gaussian is applied to x and y axis separately in order to estimate the color of the illumination rapidly. In the histogram equalization process, the histogram obtained from near-edge region is used for the histogram equalization. In the experiments, high-resolution images taken by digital camcorder are used for verifying the performance of the proposed method.

Object Recognition by Pyramid Matching of Color Cooccurrence Histogram (컬러 동시발생 히스토그램의 피라미드 매칭에 의한 물체 인식)

  • Bang, H.B.;Lee, S.H.;Suh, I.H.;Park, M.K.;Kim, S.H.;Hong, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.304-306
    • /
    • 2007
  • Methods of Object recognition from camera image are to compare features of color. edge or pattern with model in a general way. SIFT(scale-invariant feature transform) has good performance but that has high complexity of computation. Using simple color histogram has low complexity. but low performance. In this paper we represent a model as a color cooccurrence histogram. and we improve performance using pyramid matching. The color cooccurrence histogram keeps track of the number of pairs of certain colored pixels that occur at certain separation distances in image space. The color cooccurrence histogram adds geometric information to the normal color histogram. We suggest object recognition by pyramid matching of color cooccurrence histogram.

  • PDF

Contents-based Image Retrieval Using Color & Edge Information (칼라와 에지 정보를 이용한 내용기반 영상 검색)

  • Park, Dong-Won;An, Syungog;Ma, Ming;Singh, Kulwinder
    • The Journal of Korean Association of Computer Education
    • /
    • v.8 no.1
    • /
    • pp.81-91
    • /
    • 2005
  • In this paper we present a novel approach for image retrieval using color and edge information. We take into account the HSI(Hue, Saturation and Intensity) color space instead of RGB space, which emphasizes more on visual perception. In our system colors in an image are clustered into a small number of representative colors. The color feature descriptor consists of the representative colors and their percentages in the image. An improved cumulative color histogram distance measure is defined for this descriptor. And also, we have developed an efficient edge detection technique as an optional feature to our retrieval system in order to surmount the weakness of color feature. During the query processing, both the features (color, edge information) could be integrated for image retrieval as well as a standalone entity, by specifying it in a certain proportion. The content-based retrieval system is tested to be effective in terms of retrieval and scalability through experimental results and precision-recall analysis.

  • PDF

Content Based Image Retrieval Based on A Novel Image Block Technique Combining Color and Edge Features

  • Kwon, Goo-Rak;Haoming, Zou;Park, Sei-Seung
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.185-190
    • /
    • 2010
  • In this paper we propose the CBIR algorithm which is based on a novel image block method that combined both color and edge feature. The main drawback of global histogram representation is dependent of the color without spatial or shape information, a new image block method that divided the image to 8 related blocks which contained more information of the image is utilized to extract image feature. Based on these 8 blocks, histogram equalization and edge detection techniques are also used for image retrieval. The experimental results show that the proposed image block method has better ability of characterizing the image contents than traditional block method and can perform the retrieval system efficiently.

The Usage of Color & Edge Histogram Descriptors for Image Mining (칼라와 에지 히스토그램 기술자를 이용한 영상 마이닝 향상 기법)

  • An, Syungog;Park, Dong-Won;Singh, Kulwinder;Ma, Ming
    • The Journal of Korean Association of Computer Education
    • /
    • v.7 no.5
    • /
    • pp.111-120
    • /
    • 2004
  • The MPEG-7 standard defines a set of descriptors that extracts low-level features such as color, texture and object shape from an image and generates metadata in order to represent these extracted information. But the matching performance for image mining ma y not be satisfactory by u sing only on e of these features. Rather than by combining these features we can achieve a better query performance. In this paper we propose a new image retrieval technique for image mining that combines the features extracted from MPEG-7 visual color and texture descriptors. Specifically, we use only some specifications of Scalable Color Descriptor (SCD) and Non-Homogeneous Texture Descriptor also known as Edge Histogram Descriptor (EHD) for the implementation of the color and edge histograms respectively. MPEG-7 standard defines $l_{1}$-norm based matching in EHD and SCD. But in our approach, for distance measurement, we achieve a better result by using cosine similarity coefficient for color histograms and Euclidean distance for edge histograms. Our approach toward this system is more experimental based than hypothetical.

  • PDF

Cotent-based Image Retrieving Using Color Histogram and Color Texture (컬러 히스토그램과 컬러 텍스처를 이용한 내용기반 영상 검색 기법)

  • Lee, Hyung-Goo;Yun, Il-Dong
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.9
    • /
    • pp.76-90
    • /
    • 1999
  • In this paper, a color image retrieval algorithm is proposed based on color histogram and color texture. The representative color vectors of a color image are made from k-means clustering of its color histogram, and color texture is generated by centering around the color of pixels with its color vector. Thus the color texture means texture properties emphasized by its color histogram, and it is analyzed by Gaussian Markov Random Field (GMRF) model. The proposed algorithm can work efficiently because it does not require any low level image processing such as segmentation or edge detection, so it outperforms the traditional algorithms which use color histogram only or texture properties come from image intensity.

  • PDF

The Implementing a Color, Edge, Optical Flow based on Mixed Algorithm for Shot Boundary Improvement (샷 경계검출 개선을 위한 칼라, 엣지, 옵티컬플로우 기반의 혼합형 알고리즘 구현)

  • Park, Seo Rin;Lim, Yang Mi
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.829-836
    • /
    • 2018
  • This study attempts to detect a shot boundary in films(or dramas) based on the length of a sequence. As films or dramas use scene change effects a lot, the issues regarding the effects are more diverse than those used in surveillance cameras, sports videos, medical care and security. Visual techniques used in films are focused on the human sense of aesthetic therefore, it is difficult to solve the errors in shot boundary detection with the method employed in surveillance cameras. In order to define the errors arisen from the scene change effects between the images and resolve those issues, the mixed algorithm based upon color histogram, edge histogram, and optical flow was implemented. The shot boundary data from this study will be used when analysing the configuration of meaningful shots in sequences in the future.