• Title/Summary/Keyword: color edge histogram

검색결과 82건 처리시간 0.021초

컬러 히스토그램과 에지 히스토그램 디스크립터를 이용한 영상 검색 기법 (Similar Image Retrieval using Color Histogram and Edge Histogram Descriptor)

  • 조민혁;이상걸;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.332-335
    • /
    • 2013
  • 본 논문에서는 컬러 히스토그램과 MPEG-7의 EHD(Edge Histogram Descriptor)를 이용한 영상 검색 기법을 제안한다. EHD 알고리즘은 에지의 기울기 분포를 수집하여 유사 영상을 검색하는데 사용할 수 있다. 하지만 영상의 색상 정보는 고려하지 않고 에지의 기울기만으로 검색하면 색상 정보에는 취약한 면을 보인다. 이를 보완하기 위해서 컬러 히스토그램을 이용해 특징을 추출하여 유사 영상인지 판단한다. 기존 EHD의 취약점을 보이고 컬러 히스토그램을 이용하여 이를 보완할 수 있는 기법을 제안한다.

  • PDF

컬러에지의 벡터적 결합을 이용한 e-카탈로그 영상 검색 (e-Catalogue Image Retrieval Using Vectorial Combination of Color Edge)

  • 황의선;박상근;전준철
    • 정보처리학회논문지B
    • /
    • 제9B권5호
    • /
    • pp.579-586
    • /
    • 2002
  • 영상의 에지정보를 이용한 내용기반 영상 검색 방법은 현재 MPEG-7(Moving Picture Experts Group) 에서 제안된 에지 서술자(edge descriptor)가 대표적인 방법이며, 이때 사용된 에지의 정보는 영상의 명암도에 따른 에지히스토그램을 이용하고 있다. 본 논문에서는 새로운 컬러 에지 추출 방법을 제시하고, 제안된 방법에 의해 컬러 에지히스토그램을 특징 값으로 하는 내용기반 영상검색 방법을 제시하였다. 아울러 제안된 방법에 기반하여 인터넷 쇼핑몰에서 사용되는 e-카탈로그 상품 영상 검색에 적용하였다. 성능평가를 위하여 기존 MPEG-7에서 제시된 에지히스토그램에 의한 영상검색 방법과 비교하여 보았으며 실험결과 제안된 방법이 검색에 있어서 우수함을 입증할 수 있었다. 컬러에지의 추출은 컬러 영상의 R,G,B 채널의 각 성분의 벡터적 결합방법과 에지 맵의 벡터 노름(norm) 특성화를 통하여 이루어진다. 결과적으로 내용기반 영상 검색은 생성된 최종 에지모델이 갖는 에지의 방향성을 이용한 컬러 에지히스토그램을 통하여 수행된다.

시각적 특징을 기반한 샷 클러스터링을 통한 비디오 씬 탐지 기법 (Video Scene Detection using Shot Clustering based on Visual Features)

  • 신동욱;김태환;최중민
    • 지능정보연구
    • /
    • 제18권2호
    • /
    • pp.47-60
    • /
    • 2012
  • 비디오 데이터는 구조화되지 않은 복합 데이터의 형태를 지닌다. 이러한 비디오 데이터의 효율적인 관리 및 검색을 위한 비디오 데이터 구조화의 중요성이 대두되면서 콘텐츠 내 시각적 특징을 기반으로 비디오 씬(scene)을 탐지하고자 하는 연구가 활발히 진행되었다. 기존의 연구들은 주로 색상 정보만을 이용하여 샷(shot) 간의 유사도 평가를 기반한 클러스터링(clustering)을 통해 비디오 씬을 탐지하고자 하였다. 하지만 비디오 데이터의 색상 정보는 노이즈(noise)를 포함하고, 특정 사물의 개입 등으로 인해 급격하게 변화하기 때문에 색상만을 특징으로 고려할 경우, 비디오 샷 혹은 씬에 대한 올바른 식별과 디졸브(dissolve), 페이드(fade), 와이프(wipe)와 같은 화면의 점진적인 전환(gradual transitions) 탐지는 어렵다. 이러한 문제점을 해결하기 위해, 본 논문에서는 프레임(frame)의 컬러 히스토그램과 코너 에지, 그리고 객체 컬러 히스토그램에 해당하는 시각적 특징을 기반으로 동일한 이벤트를 구성하는 의미적으로 유사한 샷의 클러스터링을 통해 비디오 씬을 탐지하는 방법(Scene Detector by using Color histogram, corner Edge and Object color histogram, SDCEO)을 제안한다. SDCEO는 샷 바운더리 식별을 위해 컬러 히스토그램 분석 단계에서 각 프레임의 컬러 히스토그램 정보를 이용하여 1차적으로 연관성 있는 연속된 프레임을 샷 바운더리로 병합한 후, 코너 에지 분석 단계에서 병합된 샷 내 처음과 마지막 프레임의 코너 에지 특징 비교를 통하여 샷 바운더리를 정제하여 최종 샷을 식별한다. 키프레임 추출 단계에서는 샷 내 프레임간 유사도 비교를 통해 모든 프레임과 가장 유사한 프레임을 각 샷을 대표하는 키프레임으로 추출한다. 그 후, 비디오 씬 탐지를 위해, 컬러 히스토그램과 객체 컬러 히스토 그램에 해당하는 프레임의 시각적 특징을 기반으로 상향식 계층 클러스터링 방법을 이용하여 의미적인 연관성을 지니는 샷의 군집화를 통해 비디오 씬을 탐지하는 방법이다. 본 논문에서는 SDCEO의 프로토 타입을 구축하고 3개의 비디오 데이터를 이용한 실험을 통하여 SDCEO의 효율성을 평가하였고 샷 바운더리 식별의 성능의 정확도는 평균 93.3%, 비디오 씬 탐지 성능의 정확도는 평균 83.3%로 만족할만한 성능을 보였다.

색채 항상성 방법과 경계 영역 기반 히스토그램 평활화 방법을 이용한 영상의 화질 향상 방법 (An Image Enhancement Algorithm based on Color Constancy and Histogram Equalization using Edge Region)

  • 조동찬;강형섭;김회율
    • 방송공학회논문지
    • /
    • 제15권3호
    • /
    • pp.332-345
    • /
    • 2010
  • 고선명 영상에 대한 수요가 증가하면서 다양한 방면에서 좀 더 선명하고 큰 영상을 보고 촬영하려는 요구가 늘어나고 있다. 특히 디스플레이 장치의 크기가 커지고 이에 따라 영상의 해상도가 커지면서 영상에서 나타나는 잡음이나 화질 저하가 이전에 비하여 더욱 더 눈에 띄게 나타나게 되었다. 본 논문에서 고선명 영상과 같이 해상도가 큰 영상의 색상과 명암 대비를 효과적이고 빠르게 개선하기 위한 방법을 제안한다. 고해상도 영상에서 처리 속도를 높이면서 효과적으로 화질 향상 방법을 적용하기 위해 고해상도 영상을 축소시킨 영상에서 화질 향상 방법에 필요한 변수를 추출해낸다. 영상의 색상을 향상시키기 위해 기존의 색채 항상성 방법을 개선시킨 방법을 적용하였고 명암 대비를 향상시키기 위해 경계 영역을 활용한 변형 히스토그램 평활화 방법을 적용하였다. 마지막으로 고해상도 영상을 촬영할 수 있는 디지털 캠코더를 이용하여 촬영한 실험 영상으로 제안하는 방법의 성능을 분석하였다.

컬러 동시발생 히스토그램의 피라미드 매칭에 의한 물체 인식 (Object Recognition by Pyramid Matching of Color Cooccurrence Histogram)

  • 방희범;이상훈;서일홍;박명관;김성훈;홍석규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.304-306
    • /
    • 2007
  • Methods of Object recognition from camera image are to compare features of color. edge or pattern with model in a general way. SIFT(scale-invariant feature transform) has good performance but that has high complexity of computation. Using simple color histogram has low complexity. but low performance. In this paper we represent a model as a color cooccurrence histogram. and we improve performance using pyramid matching. The color cooccurrence histogram keeps track of the number of pairs of certain colored pixels that occur at certain separation distances in image space. The color cooccurrence histogram adds geometric information to the normal color histogram. We suggest object recognition by pyramid matching of color cooccurrence histogram.

  • PDF

칼라와 에지 정보를 이용한 내용기반 영상 검색 (Contents-based Image Retrieval Using Color & Edge Information)

  • 박동원;안성옥
    • 컴퓨터교육학회논문지
    • /
    • 제8권1호
    • /
    • pp.81-91
    • /
    • 2005
  • 본 논문에서는 칼라와 에지 정보를 이용한 내용기반 영상검색 기법을 제안하였다. 기존의 RGB 공간 정보를 이용하기 보다는, 시각적 인식에 보다 중점을 둔 HSI칼라 공간에서 고찰하였다. 비슷한 류의 색을 대표색으로 통합 표현하여, 개선된 칼라 정보 이용법을 본 연구에서 제안하였다. 또한 칼라 정보만을 이용했을 때의 시스템 성능상의 결점을 보완하기 위하여, 효율적인 에지 디텍션 기법을 함께 사용하였다. 칼라와 에지 기법을 통합함에 있어서, 각각의 기법에 적절한 가중치를 배분함으로써 시스템 성능을 실험적으로 향상시켰다.

  • PDF

Content Based Image Retrieval Based on A Novel Image Block Technique Combining Color and Edge Features

  • Kwon, Goo-Rak;Haoming, Zou;Park, Sei-Seung
    • Journal of information and communication convergence engineering
    • /
    • 제8권2호
    • /
    • pp.185-190
    • /
    • 2010
  • In this paper we propose the CBIR algorithm which is based on a novel image block method that combined both color and edge feature. The main drawback of global histogram representation is dependent of the color without spatial or shape information, a new image block method that divided the image to 8 related blocks which contained more information of the image is utilized to extract image feature. Based on these 8 blocks, histogram equalization and edge detection techniques are also used for image retrieval. The experimental results show that the proposed image block method has better ability of characterizing the image contents than traditional block method and can perform the retrieval system efficiently.

칼라와 에지 히스토그램 기술자를 이용한 영상 마이닝 향상 기법 (The Usage of Color & Edge Histogram Descriptors for Image Mining)

  • 안성옥;박동원
    • 컴퓨터교육학회논문지
    • /
    • 제7권5호
    • /
    • pp.111-120
    • /
    • 2004
  • 영상의 칼라, 텍스쳐, 오브젝트의 형체 등과 같은 하위 수준의 특징을 표현할 수 있는 기술자를 MPEG-7 표준에서 규정하고 있다. 하지만, 각각의 기술자를 따로 분석함으로써는 성능 향상에 불충분한 점이 있었다. 본 논문에서는 칼라 기술자와 텍스쳐 기술자를 결합하여 영상검색의 성능을 향상시키는 방법을 제안한다. MPEG-7 표준에서 정의한 $l_{1}$-norm방법보다, 본 논문에서는 칼라 히스토그램의 경우 코사인 근사도 계수를, 에지 히스토그램의 경우 유클리디언 디스턴스를 적용 실험하여 진일보한 결과를 도출할 수 있었다.

  • PDF

컬러 히스토그램과 컬러 텍스처를 이용한 내용기반 영상 검색 기법 (Cotent-based Image Retrieving Using Color Histogram and Color Texture)

  • 이형구;윤일동
    • 전자공학회논문지S
    • /
    • 제36S권9호
    • /
    • pp.76-90
    • /
    • 1999
  • 본 논문은 컬러 히스토그램과 ‘컬러 텍스쳐’을 이용하는 새로운 내용기반 영상 검색 기법을 제안한다. 제안한는 방법은 영상의 컬러 히스토그램을 k-means 군집화하여 얻은 컬러 벡터로 히스토그램을 대표하고, 각 대표 컬러 벡터를 중심으로 화소 색상과의 거리를 이용해 컬러 텍스처를 만든다. 그러므로, 컬러 텍스처란 영상의 컬러 히스토그램에 의해 두드러지는 텍스처 성분을 의미하며 본 논문에서는 컬러 텍스처를 Gaussian Markov Random Field (GMRF) 모델로 해석한다. 제안하는 알고리듬은 영역화와 같은 기하학적 정보를 추출하는 과정이 없으므로 고속의 검색에 적합하며, 기존의 컬러 히스토그램만을 이용한 기법이나 영상의 밝기 성분에서 나타나는 텍스처를 이용한 방법에 비해 효과적인 검색 결과를 나타낸다.

  • PDF

샷 경계검출 개선을 위한 칼라, 엣지, 옵티컬플로우 기반의 혼합형 알고리즘 구현 (The Implementing a Color, Edge, Optical Flow based on Mixed Algorithm for Shot Boundary Improvement)

  • 박서린;임양미
    • 한국멀티미디어학회논문지
    • /
    • 제21권8호
    • /
    • pp.829-836
    • /
    • 2018
  • This study attempts to detect a shot boundary in films(or dramas) based on the length of a sequence. As films or dramas use scene change effects a lot, the issues regarding the effects are more diverse than those used in surveillance cameras, sports videos, medical care and security. Visual techniques used in films are focused on the human sense of aesthetic therefore, it is difficult to solve the errors in shot boundary detection with the method employed in surveillance cameras. In order to define the errors arisen from the scene change effects between the images and resolve those issues, the mixed algorithm based upon color histogram, edge histogram, and optical flow was implemented. The shot boundary data from this study will be used when analysing the configuration of meaningful shots in sequences in the future.