• Title/Summary/Keyword: collision accident

Search Result 464, Processing Time 0.024 seconds

Study on Computational Simulation of a Metro Collision Accident and Improvement of Passive Safety (도시철도 충돌사고 시뮬레이션 및 충돌안전도 개선방안 연구)

  • Jung, Hyun Seung;Son, Seung Wan;Kwon, Tae Soo;Kim, Jin Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.885-892
    • /
    • 2015
  • In this study, we simulate the railway crash accident that occurred at the Sangwangsimni station on the Seoul Metro Line #2, and we propose a solution to minimize the damage. We use LS-DYNA, which is the commercial software employed for collision analysis to perform 1-D and 3-D simulations for the recurrence of accidents. By performing 1-D simulations, we analyze the load, displacement, absorbed energy of the couplers, and acceleration of vehicles, and we evaluate the safety in accidental collisions. By performing 3-D simulations, we analyze the deformation of the car and over-ridding. We propose methods to improve the safety in collisions involving railway vehicles, and we perform collision accident simulations to determine improvements when applying a high-performance energy absorber to the front car.

The Main factor and Counterplan for Marine accidents in Korea (해양사고의 원인분석과 저감대책)

  • CHO, Hyun-Kuk;PARK, Byung-Soo;KANG, Dong-Hoon;KIM, Sung-Soo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.3
    • /
    • pp.746-756
    • /
    • 2017
  • Marine accidents of fishing vessels occupied about 70.5% of the whole marine accidents in Korea from 1996 to 2015, this ratio was not much changed for a long time. A lot of efforts have been taken recently but marine accidents do not reduce. Therefore a fundamental counterplan to decrease accidents in fishing vessel is indispensable for reduction of whole marine accidents in Korea. Since the most frequent occurring accidents in fishing vessels were engine trouble and collision in statistics by KMST (1996~2015), the study focused on them. The cause of engine trouble were poor inspection and maintenance of the mechanical system. The greatest portion of marine accidents was collision, and the biggest cause of the collision was poor watch-keeping. The better watch-keeping will be the best way to reduce the accident. For this reason, it may be necessary for the navigator to make strict precaution on the other vessels under way systematically and keep the regulation for preventing collisions, and for an engineer on watch to make a check the mechanical system periodically for reduction the engine trouble. Instead of penalty, incentive about safe navigation will be helpful for reduce accident as if automobile insurance would do. In order to prevent engine trouble, the fisheries federation establish the repair center. Futhermore the development of autonomous navigation system is necessary to reduce the marine accident.

A Research on V2I-based Accident Prevention System for the Prevention of Unexpected Accident of Autonomous Vehicle (자율주행 차량의 돌발사고 방지를 위한 V2I 기반의 사고 방지체계 연구)

  • Han, SangYong;Kim, Myeong-jun;Kang, Dongwan;Baek, Sunwoo;Shin, Hee-seok;Kim, Jungha
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.3
    • /
    • pp.86-99
    • /
    • 2021
  • This research proposes the Accident Prevention System to prevent collision accident that can occur due to blind spots such as crossway or school zone using V2I communication. Vision sensor and LiDAR sensor located in the infrastructure of crossway somewhere like that recognize objects and warn vehicles at risk of accidents to prevent accidents in advance. Using deep learning-based YOLOv4 to recognize the object entering the intersection and using the Manhattan Distance value with LiDAR sensors to calculate the expected collision time and the weight of braking distance and secure safe distance. V2I communication used ROS (Robot Operating System) communication to prevent accidents in advance by conveying various information to the vehicle, including class, distance, and speed of entry objects, in addition to collision warning.

An Investigation of the Car Accident in Kyongju (교통사고의 분석과 문제점 - 경주시 인왕동 사고를 중심으로 -)

  • 박외철
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.53-58
    • /
    • 2000
  • In a car accident in Kyongju, each of the two occupants insisted that he was not driving the car. The accident was investigated to determine who the driver is through careful review of the collision report, the statements of accident and witness, photographs taken at the scene, and the expert report of the National Institute of Scientific Investigation. The accident was reconstructed based on the physical principles, injuries of occupants, damages of the involved vehicles and their final stops. A mistake was found in the expert report.

  • PDF

Analysis of vehicle central line invasion accidents using simulation (시뮬레이션을 이용한 차량의 중앙선 침범 사고 해석)

  • Han, Chang-Pyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.507-513
    • /
    • 2021
  • This study examined the final stop position and posture of both vehicles, the damaged part of the vehicle, the road surface, the specifications of the vehicle, and the angle of impact, centering on the case of a collision in which no surface trace was found. As a result of the simulation, the impact velocity of an SM5 and Lexus was 131 km/h and 74 km/h, respectively, and the impact angle of the SM5 and Lexus was 0.91° and -161.07°, respectively. The cause of the accident was that the SM5 passed through the intersection exceeding the maximum speed limit of 61 km/h and entered the Lexus' left turn lane. Lexus collided during the evacuation to avoid the collision. The collision trajectory error rate of the simulation was approximately 1.4%. Of the subjective experience of accident investigators, the collision dynamics and vehicle engineering aspects and simulations were actively utilized to provide close-to-fact cause identification.

A Study on the Collision between Fishing Vessel and non Fishing Vessel using Questionnaire Analysis (설문분석을 통한 어선 비어선간 충돌사고에 관한 연구)

  • Park, Moon-Kab;Jeon, Yeong-Woo;Lee, Yoo-Won
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.3
    • /
    • pp.716-723
    • /
    • 2013
  • The postal or group questionnaire survey was conducted to inquire into the cause of collision between fishing vessel and non-fishing vessel targeting fishing vessel personnel(FVP), non-NFVP and a person involved in a marine accident. As a result, we could verify the root cause of collision, a negligence of lookout which noted overwork for FVP and careless for non-FVP. The cause of collision by inappropriate avoid action was poor communications for FVP and non-FVP. To reduce collision, we need to be trained to take a sharp lookout, a radio communication by VHF and the collision avoidance actions by early and substantial action to keep well clear. The results are expected to contribute for the reduction of collision and victims.

The Relation between Human Behavior and Safety in the Collision Avoidance Situation

  • Park, Jung-Sun;Kobayashi, Hiroaki;Yea, Byeong-Deok
    • Journal of Navigation and Port Research
    • /
    • v.27 no.6
    • /
    • pp.611-618
    • /
    • 2003
  • It can be said that the relationship between the maneuvering ability of operators and the navigational environment affects the safe degree of navigation in the collision avoidance situation. In order to reduce the occurrence probability of accident and to maintain the safety, it is necessary to clarify the relationship between human behavior and navigational environment. In this study, therefore, we analyzed and discussed the relationship between the maneuvering characteristics and the safety focused on human behavior as a fundamental factor of marine accidents using ship handling simulator and questionnaire. As a result, we concluded that navigational environment changes variously and the maneuvering ability of operators also varies with the navigational environment, and the ship handling characteristics strongly affect the occurrence probability of accident.

An Application of Computer Vision and Laser Radar to a Collision Warning System (자동차 추돌경보 시스템 개발을 위한 컴퓨터 비젼과 레이저 레이다의 응용)

  • 이준웅
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.258-267
    • /
    • 1999
  • An intelligent safety vehicle(ISV) should have an ability to predict the possibility of an accident and help a driver avoid the accident in advance. The basic function of the ISV is to alert the driver by warning when the collision is to occur. For this purpose, the ISV has to function efficiently in sensing the environmental context. While image processing provides lane information, laser radar senses road obstacles including vehicles. By applying a simple clustering algorithm to radar signals, it is possible to obtain the vehicle information. Consequently, we can identify the existence of the vehicle of interest on my lane. The reliability of the sensing algorithm is evaluated by running on the highway with a test vehicle.

  • PDF

A Quantitative Collision Probability Analysis in Port Waterway (항만수로의 정량적인 충돌확률 분석)

  • Jeong, Jung-Sik;Kim, Kwang-Il;Park, Gyei-Kark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.373-378
    • /
    • 2012
  • In terms of the maritime accident prevention, risk analysis at targeted warterways is important for planning safety waterways. This paper analyzes the maritime accidents probability in the Mokpo waterways, South Korea, based on the IWRAP(IALA Waterway Risk Assessment) of the quantitative accident probability tool. Vessel collision probability cate is calculated by vessels meeting direction, using IWRAP. This paper contribute to advance improvement of vessel traffic service by VTS sector providing vessel fairway risk data.

A Study on Collision Avoidance Action in the Situation of Encountering Multiple Ships by the Reserve Officer

  • Park, Deuk-Jin;Yim, Jeong-Bin;Yang, Hyeong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.346-351
    • /
    • 2018
  • The proportion of collision in the total marine accidents is high. The main causes of collisions are navigation rule violation, safety speed violation, neglected watch-keeping and improper collision avoidance action. There are two main ways of avoiding collision situations during maritime navigation: the method of altering course and reducing ship's speed. The purpose of this study is to analyze the result of the collision avoidance action of the reserve officer in case of encountering a multiple number of ships using the ship handling simulator. Full-mission ship handling simulator was used to experiment the situation scenarios that encountered multiple ships. After the experiment, the questionnaire about the experiment was investigated. A total of 50 subjects were participated in the experiment. Experimental results showed that the number of the experimenters who used the engine was 11 and the number of the experimenters who did not use the engine was 39. In the case of using the engine, there were 0 collision accident, 1 grounding accident, and 10 no accidents. However, when the engine was not used, there were 28 collision accidents, 2 grounding accidents, and 9 no accidents. The causes of these results can be found in the survey results. 74 % of the non used engine participants said they were hesitate to use the engine. As can be seen from these results, the reserve officer are hesitant to use the engine and need a way to get correct of it. Maritime course subject can emphasize the importance of using ship's engines and case study also can be it. So, It is considered that various case study scenario will need to developed by various tools in the future.