• Title/Summary/Keyword: collagenase activity

Search Result 242, Processing Time 0.034 seconds

Pupal Drone Extracts for Anti-wrinkle and Skin-lightening Materials (수벌번데기 추출물의 주름개선 및 미백효과 구명)

  • Kim, Jung-Eun;Kim, Do-Ik;Koo, Hui-Yeon;Kim, Hyeon-Jin;Kim, Seong-Yeon;Lee, Yoo-Beom;Moon, Jae-Hak;Choi, Yong-Soo
    • Journal of Life Science
    • /
    • v.30 no.5
    • /
    • pp.428-433
    • /
    • 2020
  • In this study, we created pupal stage extracts of Apis mellifera L. drones for use in cosmetic materials. The effect of the drone pupae extract (DPE) on HDF cells was assessed for analysis of anti-wrinkle activity by collagen or collagenase gene expression, and the skin-lightening effect was studied by in vitro tyrosinase inhibition and B16F10 melanoma assay; the two cells were found to be non-cellular when the concentration of DPE was 100 ㎍/ml. Albutin concentration (positive control) in the whitening test was set at a capacity of 100 ug/ml and m-melanocyte stimulating hormone (α-MSH). A melanin-producing induction material was set at a concentration of 100 nM, and the expression of collagen type I and MMP1 collagenase was measured using HDF cells. MMP1 expression was seen to reduce in a concentration-dependent manner in treatment with DPE. Inhibiting melanin generation with B16F12 cells indicated a tendency to decrease in the DPE treatment group. Both L-Tyrosine and L-DOPA as DPE were used in an in vitro tyrosinase induction test to demonstrate the effects of tyrosinase suppression on concentrations. The higher the concentration of DPE, the greater the wrinkle reduction and whitening effect. In conclusion, it was found that DPE is an effective smoothing and whitening material by increasing collagen generation and inhibiting collagenase expression and reducing melanin production.

Endometrium from Women with Endometriosis Expresses Decreased Levels of Plasminogen Activator Inhibitor-1 and Tissue Inhibitor of Metalloproteinase-3 Compared to Normal Endometrium (자궁내막증 환자와 정상 여성의 자궁내막에서 TIMP-3와 PAI-1 mRNA 발현 차이에 관한 연구)

  • 정혜원
    • Development and Reproduction
    • /
    • v.3 no.1
    • /
    • pp.29-38
    • /
    • 1999
  • The pathogenesis of endometriosis is unknown, but retrograde menstruation is widely accepted as an etiology. Refluxed endometrium from endometriosis patients is more prone to implant and invade peritoneum possibly through the action of extracellular proteolysis. This proteolytic action may involve plasminogen activators and the collagenase system. Plasminogen activators (PAs) and matrix metalloproteinases (MMPs) play a critical role in the breakdown of extracellular matrix components and basement membrane in the processes of implantation and tumor invasion. PAs are inhibited by plasminogen activator inhibitor (PAI) and MMPs activity is inhibited by tissue inhibitor of metalloproteinase (TIMP). To test the hypothesis that lower expression of PAI-1 and TIMP-3 in endometrium from women with endometriosis, we investigated their PAI-1 and TIMP-3 expression by quantitative competitive RT PCR in endometrium from women with and without endometriosis. Endometrial tissues were obtained from 14 patients with severe endometriosis and 14 patients without endometriosis. Total RNA was extracted and reverse transcribed into cDNA, and quantitative competitive PCR (QC PCR) was performed to evaluate PAI-1 and TIMP-3 mRNA expression. Endometrium from patients with endometriosis showed decreased expression of PAI-1 and TIMP-3 mRNA compared to endometrium from control in luteal phase (p<0.05). Our results suggest that endometrium from women with endometriosis expresses lower levels of PAI-1 and TIMP-3 than endometrium from normal women. Endometrium from endometriosis patients may be more invasive and prone to peritoneal implantation than control because of higher PA and MMP enzymatic activity. Thus, increased proteolytic activity may be one of the reasons for the invasive properties of the endometrium resulting in the development of endometriosis.

  • PDF

Beauty food activities of wild-cultivated Ginseng (Panax ginseng C.A. Meyer) ground part (산양삼(Panax ginseng C.A. Meyer) 지상부위의 미용 식품 활성)

  • Kim, Myeong-Wook;Lee, Eun-Ho;Kim, Ye-Jin;Park, Tae-Soon;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.1
    • /
    • pp.33-38
    • /
    • 2018
  • This study aimed to investigate the beauty food activities of wild-cultivated ginseng (Panax ginseng C.A. Meyer). wild-cultivated ginseng extracts were analyzed for antioxidant, skin whitening, anti-wrinkle effect was measured in water and 70% ethanol extract. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging and 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical decolorization activities of water and 70% ethanol extracts were 16.69 and 2.18% as well as 4.04 and 3.25% at a solid content of $200{\mu}g/mL$, respectively. The antioxidant protection factors (PF) of water and 70% ethanol extracts at a solid content of $200{\mu}g/mL$ were 1.06 PF and 1.09 PF, respectively. Thiobarbituric acid reactive substance (TBARs) were both 96% at a solid content of $200{\mu}g/mL$. As PF and TBARs showed higher activity than DPPH and ABTS, we could know that antioxidant activity in the lipophilic component of wood-cultivated ginseng were superior to water-soluble component of wood-cultivated ginseng. Tyrosinase inhibitory activity was 10.97 and 52.39% in water and 70% ethanol extracts at a solid content of $200{\mu}g/mL$. The collagenase and elastase inhibitory activities as anti-wrinkle effect were 15.71 and 20.43% in water extracts as well as 32.26 and 86.74% in 70% ethanol extract at a solid content of $200{\mu}g/mL$. The results show that anti-wrinkle effect was the best among the other experiments. This extracts from wood-cultivated ginseng, therefore, seems to be a potent beauty food resource against wrinkles.

A Study of Anti-wrinkle Activities as a Functional Cosmetic Ingredient of Rhododendron brachycarpum Extracts (만병초(Rhododendron brachycarpum) 추출물의 기능성 화장품 소재로써의 주름개선 활성에 관한 연구)

  • Yeom, Hyeon-Ji;Oh, Min-Jeong;Chae, Jung-Woo;Lee, Jin-Young
    • Journal of Life Science
    • /
    • v.32 no.8
    • /
    • pp.622-632
    • /
    • 2022
  • The purpose of this study was to investigate activities as functional cosmetic materials, focusing on Rhododendron brachycarpum (RB) and Rhododendron fortunei (RF). The tyrosinase inhibitory effect, related to skin-whitening, was 32.6% and 39.3% respectively at the concentration of 1,000 ㎍/ml. The elastase inhibitory effect, related to skin anti-wrinkling activity, was 30% and 36.2% at 1,000 ㎍/ml concentration. Collagenase inhibitory activity showed 77.7%, and 80.2% respectively at 1,000 ㎍/ml concentration, which demonstrated excellent inhibitory activity. For a cell viability test, that measured on fibroblast cells by RB and RF extracts. Furthermore, the cell viability test showed 100.9% and 98.9% with cell viability at 100 ㎍/ml concentration in CCD-986Sk. The protein expression inhibitory effect of RB and RF extracts was measured by western blot at 25, 50, and 100 ㎍/ml concentrations, and the β-actin was used as a positive control. As a result, western blot of RB and RF extracts was measured by the expression inhibition rate of the MMP-1, MMP-2, MMP-3 protein, and was decreased by 67.2%, 65.5%, 13.6%, and 89.1%, 85.0%, and 62.7% at 100 ㎍/ml concentration. The mRNA expression inhibitory effect of RB and RF extracts was measured by RT-PCR at 25, 50, and 100 ㎍/ml concentrations, and the GAPDH was used as a positive control. According to the results of RT-PCR of RB and RF extracts, the expression inhibition rate of the MMP-1, MMP-2, and MMP-3 mRNA was decreased by 70.1%, 9.1%, 37.9%, and 38.2%, 8.3%, 57.3% at 100 ㎍/ml concentrations. So, RB and RF extracts showed the anti-wrinkle effectiveness as a functional cosmetic material.

Various Physiological and Anti-inflammatory Effects of Sanguisorba officinalis L. Roots as a Functional Cosmetic Material (기능성 화장품 소재로써 오이풀 뿌리(Sanguisorba officinalis L. roots)의 다양한 생리 활성 및 항염증 효과)

  • Seung-Mi Park;Min-Jeong Oh;Hyeon-Ji Yeom;Mi-Ock Shim;Jin-Young Lee
    • Journal of Life Science
    • /
    • v.33 no.5
    • /
    • pp.406-413
    • /
    • 2023
  • In this study, the various physiological and anti-inflammatory activities of Sanguisorba officinalis L. roots (SR) were assessed for potential use as functional cosmetic materials. As a result of measuring electron-donating abilities to determine the antioxidant ability of SR extract, activity increased as the concentration increased, showing an excellent antioxidant capacity of 93.8% at a 1,000 ㎍/ml concentration. Further, the antioxidant power of SR extract, which was determined using an ABTS+ assay measurement, was more than 99% at concentrations of 50 ㎍/ml or more, while the tyrosinase inhibition rate was 37.7% at the highest concentration of 1,000 ㎍/ml. Consequently, the elastase and collagenase inhibition of SR extract measured 84.9% and 90.3%, respectively, at a 1,000-㎍/ml concentration. As a result of confirming the survival rate of Raw 264.7 cells, the cell survival rate was determined to be 80% or more below a 100 ㎍/ml concentration, and subsequent cell-related experiments were conducted at concentrations below 100 ㎍/ml. Furthermore, after applying a NO assay to identify anti-inflammatory activity, it was confirmed that SR extract had an inhibitory rate of 50.8% at a concentration of 500 ㎍/ml, and it was excellent at suppressing the inflammatory expression. As a result of verifying protein expression by treating SR extract in Raw 264.7 cells, it was confirmed that expression was inhibited concentrated in all factors. Therefore, it is judged that SR can be used as a functional cosmetic material with antioxidant, whitening, and wrinkle-improving physiological effects and anti-inflammatory activities.

Isolation and Characterization of Antioxidative Peptides from Enzymatic Hydrolysates of Yellowfin Sole Skin Gelatin (가자미피 젤라틴 가수분해물로부터 항산화성 펩티드의 분리${\cdot}$정제 및 특성)

  • KIM Se-Kwon;LEE Hyun-Chel;BYUN He-Guk;JEON Yon-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.2
    • /
    • pp.246-255
    • /
    • 1996
  • To develop a natural antioxidative peptide, the gelatin was extracted from fish (Yellowfin sole) skin by hot $water(50^{\circ}C)$ extraction method and hydrolyzed with Alcalase, pronase and collagenase through a continuous 3-step membrane reactor. Each step enzymatic hydrolysates were determined the antioxidative activity and their synergistic effects, compared with $\alpha-tocopherol$ and butylated hydroxytoluene (BHT). Also, we tried to investigate the antioxidative disposition of peptide which was successfully separated by gel filtration, ion-exchange chromatography, and HPIC in cultured rat hepatocytes intoxicated with tert-butyl hydroperoxide (TBHP). Second step enzymatic hydrolysate (SSEH) among all hydrolysates and $\alpha-tocoperol$ was showed the strongest antioxidative activity. The optimum concentration of antioxidative activity for SSEH was $1\%(w/w)$ in linoleic acid. The synergistic effects were increased in using the hydrolysate with tocopherol and BHT. In the presence of the peptide isolated from SSEH, supplemented hepatocytes exposed to TBHP showed that delayed cell killing and decreased significantly the lipid peroxidation, compared with hepatocytes not cultured with isolated peptide.

  • PDF

Testosterone Relaxes Rabbit Seminal Vesicle by Calcium Channel Inhibition

  • Kim, Jong-Kok;Han, Woo-Ha;Lee, Moo-Yeol;Myung, Soon-Chul;Kim, Sae-Chul;Kim, Min-Ky
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.2
    • /
    • pp.73-77
    • /
    • 2008
  • Recent studies have documented that testosterone relaxes several smooth muscles by modulating $K^+$ channel activities. Smooth muscles of seminal vesicles playa fundamental role in ejaculation, which might involve testosterone. This study was aimed to assess the role of testosterone in seminal vesicular motility by studying its effects on contractile agents and on the ion channels of single vesicular myocytes in a rabbit model. The contractile responses of circular smooth muscle strips of rabbit seminal vesicles to norepinephrine ($10{\mu}M$), a high concentration of KCI (70 mM), and testosterone ($10{\mu}M$) were observed. Single vesicular myocytes of rabbit were isolated using proteolytic enzymes including collagenase and papain. Inside-out, attached, and whole-cell configurations were examined using the patch clamp technique. The applications of $10{\mu}M$ norepinephrine or 70 mM KCl induced tonic contractions, and $10{\mu}M$ testosterone (pharmacological concentration) evoked dose-dependent relaxations of these precontracted strips. Various $K^+$ channel blockers, such as tetraethylammonium (TEA; $10{\mu}M$), iberiotoxin ($0.1{\mu}M$), 4-aminopyridine (4-AP, $10{\mu}M$), or glibenclamide ($10{\mu}M$) rarely affected these relaxations. Single channel data (of inside-out and attached configurations) of BK channel activity were also hardly affected by testosterone ($10{\mu}M$). On the other hand, however, testosterone reduced L-type $Ca^{2+}$ currents significantly, and found to induce acute relaxation of seminal vesicular smooth muscle and this was mediated, at least in part, by $Ca^{2+}$ current inhibition in rabbit.

Inhibition of Tumor Invasion and Metastasis by Calcium Spirulan(Ca-SP), a Novel Sulfated Polysaccharide Derived from a Blue-Green Alga Spirulina Platensis

  • Saiki, Ikuo;Murata, Jun;Fujii, Hideki;Kato, Toshimitsu
    • Nutritional Sciences
    • /
    • v.7 no.3
    • /
    • pp.144-150
    • /
    • 2004
  • We have investigated the effect of calcium spirulan(Ca-SP) isolated from a blue-green alga Spirulina platensis, which is a sulfated polysaccharide chelating calcium and mainly composed of rhamnose and fructose, on invasion of both B16- BL6 melanoma cells, Colon 26 carcinoma and HT-1080 fibrosarcoma cells through reconstituted basement membrane (Matrigel). Ca-SP significantly inhibited the invasion of these tumor cells through Matrigel/fibronectin-coated filters in a concentration-dependent manner. Ca-SP also inhibited the haptotactic migration of tumor cells to laminin, but it had no inhibitory effect on tumor cell migration to fibronectin-coated filters. Ca-SP prevented the adhesion of B16-BL6 cells to Matrigel- and laminin-substrates but did not affect the adhesion to fibronectin. The pretreatment of tumor cells with Ca-SP inhibited the adhesion to laminin in a concentration-dependent fashion, while the pretreatment of laminin-substrates did not. Ca-SP had no effect on the production and activation of type IV collagenase in gelatin zymography. In contraset, Ca-SP significantly inhibited degradation of heparan sulfate by purified heparanase. The experimental lung metastasis was significantly reduced by co-injection of B16-BL6 cells with Ca-SP in a dose-dependent manner. Seven intermittent ⅰ.ⅴ. injection of 100$\mu\textrm{g}$ of Ca-SP caused a marked decrease of lung tumor colonization of B16-BL6 cells in a spontaneous lung metastasis model. These results suggest that Ca-SP, a novel sulfated polysaccharide, could reduce the lung colonization of B16-BL6 melanoma cells in experimental metastasis model, by inhibiting the tumor invasion of basement membrane Matrigel, probably through the prevention of the adhesion and migration of tumor cells to laminin-substrate and of the heparanase activity.

THE EFFECT OF TENSILE FORCE ON DNA AND PROTEIN SYNTHESIS IN BONE CELLS (인장력이 골조직 세포군의 DNA 및 단백합성에 미치는 영향)

  • Kwon, Oh-Sun;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.24 no.4 s.47
    • /
    • pp.933-943
    • /
    • 1994
  • The present study was undertaken to determine the effect of tensile force on DNA and protein biosynthesis in bone cells, and to identify the cell type(s) which primarily respond to external physical force among the heterogenous bone cell populations. As a prerequisite for this study, two bone cell populations which retain fibroblastic and osteoblastic feature were isolated from fetal rat calvaria with sequential enzyme digestion scheme. Tensile force was delivered to each bone cell population by two acrylic resin plates connected with a orthodontic expansion screw during culture period. Rate of DNA and protein synthesis in each bone cell population were assessed by the incorporated radioactivity of $[^3H]-thymidine$ into DNA and $[^3H]-proline$ into fraction of collagenase-digestible protein and noncollagenous protein, respectively. DNA synthesis of osteoblast-like calvarial cell populations was increased significantly by the application of tensile force for 24 hours. In contrast, no alteration in DNA synthesis of fibroblast-like populations could be observed in response to applied force. Tensile force induced the change in protein synthesis of bone cell populations with the same pattern. Total protein and collagen synthesis were increased whithin 24 hours in osteoblast-like populations, but not in fibroblast-like populations by tensile force application. These findings indicate that physical force can affect cellullar activity of the particular cell population, not all cell Populations residing in bone and osteoblasts respond more sensitively than fibroblasts. So osteoblasts can modulate the behavior of other bone cells including osteoclasts by producing several local regulating factors of bone metabolism. In this context, preferential responsiveness of osteoblasts to applied tensile force observed in this study suggests that osteoblasts may play an important role in regulation of physical force-induced remodelling process.

  • PDF

THE EFFECTS OF HERBAL EXTRACTS ON PRODUCTION AND ACTIVlTY OF INTERLEUKIN 1${\beta}$ (생약추출물이 Intrerleukin-1 ${\beta}$의 생성 및 활성에 미치는 영향)

  • Cho, Ki-Yeong;Lee, Yong-Moo;Choi, Sang-Mook;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.2
    • /
    • pp.386-396
    • /
    • 1995
  • Interieukin 1${\beta}$ is a potent bone resorptive cytokine which mediates soft tissue destruction through the stimulatidn of prostaglandin production and the induction of collagenase. This constellation of activities suggests a role of IL-1${\beta}$ in the pathogenesis of periodontal disease. The purpose of this study was to evaluate the effects of herbal extracts on production and activity of IL-1${\beta}$. When LPS was added to cultured human blood monocytes, the effects of herbal extracts on the production of IL-1${\beta}$ was evaluate by thymocyte stimulation assay. When rHuIL-1${\beta}$ was added to cultured human gingival fibroblasts, the effects of herbal extracts on production of $PGE_2$ was evaluated by ELISA and when it was added to cultured mouse calvaria, the effects on bone resorption was estimated by .$^{45}Ca$-release bone resorption assay. The herbal extracts that had been used in this study were as follows; Asparagi Radix, Schzandrae Fractus, Zizyphi Fractus and Rhois Galla. The following results were obtained from this study. 1. All these extracts effectively inhibited the production of IL-1${\beta}$ on cultured human blood monocytes. 2. All these extracts effectively inibited the production of $PGE_2$ on cultured human gingival fibroblasts. 3. All these extracts did not effectively inhibit the bone resorption induced by rHulL-1${\beta}$ on cultured mouse calvaria.

  • PDF