THE EFFECT OF TENSILE FORCE ON DNA AND PROTEIN SYNTHESIS IN BONE CELLS

인장력이 골조직 세포군의 DNA 및 단백합성에 미치는 영향

  • Kwon, Oh-Sun (Dept. of Orthodontics, College of Dentistry, Wonkwang University) ;
  • Kim, Sang-Cheol (Dept. of Orthodontics, College of Dentistry, Wonkwang University)
  • 권오선 (원광대학교 치과대학 치과교정학교실) ;
  • 김상철 (원광대학교 치과대학 치과교정학교실)
  • Published : 1994.12.01

Abstract

The present study was undertaken to determine the effect of tensile force on DNA and protein biosynthesis in bone cells, and to identify the cell type(s) which primarily respond to external physical force among the heterogenous bone cell populations. As a prerequisite for this study, two bone cell populations which retain fibroblastic and osteoblastic feature were isolated from fetal rat calvaria with sequential enzyme digestion scheme. Tensile force was delivered to each bone cell population by two acrylic resin plates connected with a orthodontic expansion screw during culture period. Rate of DNA and protein synthesis in each bone cell population were assessed by the incorporated radioactivity of $[^3H]-thymidine$ into DNA and $[^3H]-proline$ into fraction of collagenase-digestible protein and noncollagenous protein, respectively. DNA synthesis of osteoblast-like calvarial cell populations was increased significantly by the application of tensile force for 24 hours. In contrast, no alteration in DNA synthesis of fibroblast-like populations could be observed in response to applied force. Tensile force induced the change in protein synthesis of bone cell populations with the same pattern. Total protein and collagen synthesis were increased whithin 24 hours in osteoblast-like populations, but not in fibroblast-like populations by tensile force application. These findings indicate that physical force can affect cellullar activity of the particular cell population, not all cell Populations residing in bone and osteoblasts respond more sensitively than fibroblasts. So osteoblasts can modulate the behavior of other bone cells including osteoclasts by producing several local regulating factors of bone metabolism. In this context, preferential responsiveness of osteoblasts to applied tensile force observed in this study suggests that osteoblasts may play an important role in regulation of physical force-induced remodelling process.

Keywords