• Title/Summary/Keyword: collagen lattices

Search Result 2, Processing Time 0.017 seconds

Local Silencing of Connective Tissue Growth Factor by siRNA/Peptide Improves Dermal Collagen Arrangements

  • Cho Lee, Ae-Ri;Woo, Inhae
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.711-719
    • /
    • 2018
  • BACKGROUND: Collagen organization within tissues has a critical role in wound regeneration. Collagen fibril diameter, arrangements and maturity between connective tissue growth factor (CTGF) small interfering RNA (siRNA) and mismatch scrambled siRNA-treated wound were compared to evaluate the efficacy of CTGF siRNA as a future implement for scar preventive medicine. METHODS: Nanocomplexes of CTGF small interfering RNA (CTGF siRNA) with cell penetrating peptides (KALA and $MPG^{{\Delta}NLS}$) were formulated and their effects on CTGF downregulation, collagen fibril diameter and arrangement were investigated. Various ratios of CTGF siRNA and peptide complexes were prepared and down-regulation were evaluated by immunoblot analysis. Control and CTGF siRNA modified cells-populated collagen lattices were prepared and rates of contraction measured. Collagen organization in rabbit ear 8 mm biopsy punch wound at 1 day to 8 wks post injury time were investigated by transmission electron microscopy and histology was investigated with Olympus System and TS-Auto software. CONCLUSION: CTGF expression was down-regulated to 40% of control by CTGF siRNA/KALA (1:24) complexes (p<0.01) and collagen lattice contraction was inhibited. However, down-regulated of CTGF by CTGF $siRNA/MPG^{{\Delta}NLS}$ complexes was not statistically significant. CTGF KALA-treated wound appeared with well formed-basket weave pattern of collagen fibrils with mean diameter of $128{\pm}22nm$ (n = 821). Mismatch siRNA/KALA-treated wound showed a high frequency of parallel small diameter fibrils (mean $90{\pm}20nm$, n = 563). CONCLUSION: Controlling over-expression of CTGF by peptide-mediated siRNA delivery could improve the collagen orientation and tissue remodeling in full thickness rabbit ear wound.

COMPARISON OF THE BIOMECHANICAL AND BIOSYNTHETIC BEHAVIOR OF NORMAL HUMAN FIBROBLASTS AND FIBROBLASTS ISSUE FROM A FOREHEAD WRINKLE

  • Jouandeaud, M.;Viennet, C.;Chadebec, P.;Bordes, S.;Closs, B.;Humbert, P.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.192-202
    • /
    • 2003
  • The wrinkles correspond to the most obvious expression of skin ageing and are manifested by changes on the organization and dermal structure. In the extracellular matrix, decreased quantities of collagens and glycosaminoglycans as well as a deterioration of the fibrillary network is noted, result in a reduction of dermal thickness. In addition, the activity of the collagenases increases in contrast to the synthesis of collagen fibers. Nor are cells spared during the aging process. We thus studied and compared the contractile capacity as well as the synthesis capacity of normal human fibroblasts and human fibroblasts obtained from biopsies of forehead wrinkles. The capacity of the fibroblasts to be adhered to the collagen network and to maintain a three-dimensional structure of dermis was studied on a model of equivalent dermis. The metabolic activity was studied by evaluating the capacities of synthesis of collagen I, main component of dermis. Human fibroblasts resulting from the forehead wrinkle contract less the gel of collagen than the normal human fibroblasts and present an activity of biosynthesis of collagen I less important than normal human fibroblasts. These results show that fibroblasts with aging present a deceleration of their metabolic activity and lose their capacity of adhesion to collagen fibers thus limiting the possibility of organizing the dermal tissue. We investigated the potential of an active ingredient able to compensate for the reduction of the metabolic activity and to restore the contractile capacity of fibroblasts obtained from forehead wrinkles. This effect was compared with a reference molecule: the vitamin C.

  • PDF