• Title/Summary/Keyword: coli

Search Result 7,465, Processing Time 0.026 seconds

Effects of Egg Yolk Antibodies Produced in Response to Different Antigenic Fractions of E. coli O157:H7 on E. coli Suppression

  • Chae, H.S.;Singh, N.K.;Ahn, C.N.;Yoo, Y.M.;Jeong, S.G.;Ham, J.S.;Kim, D.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.11
    • /
    • pp.1665-1670
    • /
    • 2006
  • The objective of this research was to provide the characterization and method for producing anti-E. coli O157:H7 antibodies in egg-laying hens and to determine if the antibody can restrain the proliferation of E. coli O157:H7 in-vitro. Selected antigenic fractions (whole cell, outer membrane protein and lipopolysaccharide (LPS)) from E. coli O157:H7 were injected to hens in order to produce anti-E. coli O157:H7 antibodies. The immune response and the egg yolk antibodies of laying hens against the whole cell, outer membrane protein and LPS antigens were monitored by ELISA. The level of antibodies against whole cell antigen monitored through ELISA sharply increased after the initial immunization, and it was found to be maximum on day 49 however, the level was maintained up to day 70. Antibodies (5 mg/ml) directed against the whole cell inhibited E. coli proliferation 10-13 times more than outer membrane protein or LPS. The antibody response against the whole cell antigens appeared to have higher activity in restraining the proliferation of E. coli O157:H7 than antibody against outer membrane protein or LPS. Results reflected that increasing the IgY's in the egg yolk could prevent greater economic losses due to human and animal health from pathogenic bacteria i.e. E. coli O157:H7.

Cell-SELEX Based Identification of an RNA Aptamer for Escherichia coli and Its Use in Various Detection Formats

  • Dua, Pooja;Ren, Shuo;Lee, Sang Wook;Kim, Joon-Ki;Shin, Hye-su;Jeong, OK-Chan;Kim, Soyoun;Lee, Dong-Ki
    • Molecules and Cells
    • /
    • v.39 no.11
    • /
    • pp.807-813
    • /
    • 2016
  • Escherichia coli are important indicator organisms, used routinely for the monitoring of water and food safety. For quick, sensitive and real-time detection of E. coli we developed a 2'F modified RNA aptamer Ec3, by Cell-SELEX. The 31 nucleotide truncated Ec3 demonstrated improved binding and low nano-molar affinity to E. coli. The aptamer developed by us out-performs the commercial antibody and aptamer used for E. coli detection. Ec3(31) aptamer based E. coli detection was done using three different detection formats and the assay sensitivities were determined. Conventional Ec3(31)-biotin-streptavidin magnetic separation could detect E. coli with a limit of detection of $1.3{\times}10^6CFU/ml$. Although, optical analytic technique, biolayer interferometry, did not improve the sensitivity of detection for whole cells, a very significant improvement in the detection was seen with the E. coli cell lysate ($5{\times}10^4CFU/ml$). Finally we developed Electrochemical Impedance Spectroscopy (EIS) gap capacitance biosensor that has detection limits of $2{\times}10^4CFU/mL$ of E. coli cells, without any labeling and signal amplification techniques. We believe that our developed method can step towards more complex and real sample application.

Temperature-Dependent Expression of Escherichia coli Thioredoxin Gene

  • Lee, Jin-Joo;Park, Eun-Hee;Ahn, Ki-Sup;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.33 no.2
    • /
    • pp.166-171
    • /
    • 2000
  • Thioredoxin is a multifunctional protein that is ubiquitous in microorganisms, animals and plants. Previously, the expression of the Escherichia coli thioredoxin gene (trxA) was found to be negatively regulated by cAMP. In the present study, the effect of temperature on the expression of the E. coli trxA gene was investigated. In order to examine the temperature effect, the fusion plasmid pCL70 that harbors the E. coli trxA P1P2 promoter was used. The other two fusion plasmids, pJH3 and pMH521 that were constructed in different vectors which harbor the E. coli trxA P2 promoter, were also used. When the E. coli strain MC1061/pCL70 was grown in a rich medium at $25^{\circ}C$, $34^{\circ}C$ and $42^{\circ}C$, the cells grown at $42^{\circ}C$ gave the highest $\beta$-galactosidase activity. The E. coli MC1061/pJH3 and MC1061/pMG521 cells showed increased $\beta$-galactosidase activity after the shift of the culture temperature to $42^{\circ}C$. The wild-type trxA gene of the E. coli MC1061 cells produced much higher thioredoxin activity at the higher temperature. These results support the conclusion that the E. coli trxA gene is regulated in a temperature-dependent manner. Especially the expression from its P2 promoter appeared to be sensitive to temperature.

  • PDF

Fed-batch Culture of Recombinant E.coli for the Production of Penicillin G Amidase (Penicillin G Amidase생산을 위한 재조합 대장균의 유가배양에 관한 연구)

  • Lee, Sang-Mahn
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.314-319
    • /
    • 2008
  • Penicillin G amidase (PGA, benzylpenicillinaminohydrolase, EC 3.5.1.11) is industrially important enzyme which converts penicillin G to 6-aminopenicillanic acid (6-APA) and phenylacetic acid (PAA). The PGA in E. coli ATCC 11105 is secreted into the periplasm after removing signal sequences and becomes heterodimer which composed of two subunits, small subunit (24 kDa) and large subunit (65 kDa). In this study, the PGA gene was obtained from E. coli ATCC 11105 using PCR (polymerase chain reaction) technique. The active PGA was successfully secreated into periplasm in E. coli BL2 1(DE3) harboring pET-pga plasmid. The optimized fed-batch fermentation, consisting of a three-step shift of culture temperature from $37^{\circ}C$ to $22^{\circ}C$, gave a productivity of 19.6 U/mL with a cell growth of 62 O.D. at 600 nm.

Risk Factors of Nosocomial Bacteremia of Extended-spectrum ${\beta}$-Lactamase Producing Escherichia coli (병원획득 Extended-spectrum ${\beta}$-Lactamase 생성 Escherichia coli 균혈증의 위험인자)

  • Ko, Daisik;Moon, Song Mi;Lee, Ji Sung;Park, Yoon Soo;Cho, Yong Kyun
    • Journal of Yeungnam Medical Science
    • /
    • v.30 no.2
    • /
    • pp.83-89
    • /
    • 2013
  • Background: The prevalence of extended-spectrum ${\beta}$-lactamase (ESBL)-producing Escherichia coli is increasing rapidly worldwide. Treatment options for ESBL-producing E. coli are limited, and infections caused by this organism are associated with improper antibiotic use, a long hospital stay, and increased mortality. Thus, the assessment and early recognition of the risk factors of nosocomial infections due to ESBL-producing E. coli are important for the infection control and proper treatment. Methods: A case-control study was performed that included nosocomial episodes of ESBL-producing E. coli bacteremia at a tertiary care hospital from January 2004 to December 2007. For each case patient, three controls were randomly selected and data on predisposing factors were collected. Results: Fifty-five cases of nosocomial ESBL-producing E. coli bacteremia were studied. Carbapenem usage (OR: 11.3, 95% CI: 1.1-115.9, p=0.041), quinolone usage (OR: 4.5, 95% CI: 1.1-18.8, p=0.042), biliary obstructive disease (OR: 11.8, 95% CI: 3.0-46.7, p<0.001) and the APACHE II score (OR: 1.3, 95% CI: 1.2- 1.5, p<0.001) were analyzed as independent risk factors of nosocomial ESBL-producing E. coli bacteremia. Conclusion: Our results showed that physicians caring for patients with risk factors of nosocomial bacteremia should consider ESBL-producing E. coli as the causative organisms of the disease.

Species Transferability of Klebsiella pneumoniae Carbapenemase-2 Isolated from a High-Risk Clone of Escherichia coli ST410

  • Lee, Miyoung;Choi, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.974-981
    • /
    • 2020
  • Sequence type 410 (ST410) of Escherichia coli is an extraintestinal pathogen associated with multi drug resistance. In this study, we aimed to investigate the horizontal propagation pathway of a high-risk clone of E. coli ST410 that produces Klebsiella pneumoniae carbapenemase (KPC). blaKPC-encoding E. coli and K. pneumoniae isolates were evaluated, and complete sequencing and comparative analysis of blaKPC-encoding plasmids from E. coli and K. pneumoniae, antimicrobial susceptibility tests, polymerase chain reaction, multilocus sequence typing, and conjugal transfer of plasmids were performed. Whole-genome sequencing was performed for plasmids mediating KPC-2 production in E. coli and K. pneumoniae clinical isolates. Strains E. coli CPEc171209 and K. pneumoniae CPKp171210 were identified as ST410 and ST307, respectively. CPEc171209 harbored five plasmids belonging to serotype O8:H21, which is in the antimicrobial-resistant clade C4/H24. The CPKp171210 isolate harbored three plasmids. Both strains harbored various additional antimicrobial resistance genes. The IncX3 plasmid pECBHS_9_5 harbored blaKPC-2 within a truncated Tn4401a transposon, which also contains blaSHV-182 with duplicated conjugative elements. This plasmid displayed 100% identity with the IncX3 plasmid pKPBHS_10_3 from the K. pneumoniae CPKp171210 ST307 strain. The genes responsible for the conjugal transfer of the IncX3 plasmid included tra/trb clusters and pil genes coding the type IV pilus. ST410 can be transmitted between patients, posing an elevated risk in clinical settings. The emergence of a KPC-producing E. coli strain (ST410) is concerning because the blaKPC-2-bearing plasmids may carry treatment resistance across species barriers. Transgenic translocation occurs among carbapenem-resistant bacteria, which may spread rapidly via horizontal migration.

Cloning and Functional Characterization of Putative Escherichia coli ABC Multidrug Efflux Transporter YddA

  • Feng, Zhenyue;Liu, Defu;Liu, Ziwen;Liang, Yimin;Wang, Yanhong;Liu, Qingpeng;Liu, Zhenhua;Zang, Zhongjing;Cui, Yudong
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.982-995
    • /
    • 2020
  • A putative multidrug efflux gene, yddA, was cloned from the Escherichia coli K-12 strain. A drug-sensitive strain of E. coli missing the main multidrug efflux pump AcrB was constructed as a host and the yddA gene was knocked out in wild-type (WT) and drug-sensitive E. coliΔacrB to study the yddA function. Sensitivity to different substrates of WT E.coli, E. coliΔyddA, E. coliΔacrB and E. coliΔacrBΔyddA strains was compared with minimal inhibitory concentration (MIC) assays and fluorescence tests. MIC assay and fluorescence test results showed that YddA protein was a multidrug efflux pump that exported multiple substrates. Three inhibitors, ortho-vanadate, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and reserpine, were used in fluorescence tests. Ortho-vanadate and reserpine significantly inhibited the efflux and increased accumulation of ethidium bromide and norfloxacin, while CCCP had no significant effect on YddA-regulated efflux. The results indicated that YddA relies on energy released from ATP hydrolysis to transfer the substrates and YddA is an ABC-type multidrug exporter. Functional study of unknown ATP-binding cassette (ABC) superfamily transporters in the model organism E. coli is conducive to discovering new multidrug resistance-reversal targets and providing references for studying other ABC proteins of unknown function.

Cloning and Expression of pcbCD Genes in Escherichia coli from Pseudomonas sp. DJ-12 (Pseudomonas sp. DJ-12의 pcbCD 유전자의 클로닝과 Escherichia coli에서의 발현)

  • Kim, Chi-Kyung;Sung, Tae-Kyung;Nam, Jung-Hyun;Kim, Chang-Young;Lee, Jae-Koo
    • Korean Journal of Microbiology
    • /
    • v.32 no.1
    • /
    • pp.40-46
    • /
    • 1994
  • The pcb genes of Pseudomonas sp. DJ-12 coded for the catabolism of polychlorinated biphenyl (PCBs) and biphenyl. The products of the pcbCD genes were 2,3-dihydroxy-4'-chlorobiphenyl dioxygenase and meta-cleavage product (MCP) hydrolase, which acted on degradation of 2,3-dihydroxy-4'-chlorobiphenyl to 4-chlorobenzoate. The pcbCD genes were cloned in E. coli XLl-Blue, and then the pcbD gene was further subcloned. As a metabolite transformed from 2,3-dihydroxybiphenyl by the cloned cell of E coli CU103, benzoate was detected by the resting cell assay. The enzyme activities of 2,3-dihydroxybiphenyl dioxygease and MCP hydrolase produced in the cloned cells E. coli CU103 and CU105 were about 17 and 3 times higher than those of Pseudomonas sp. DJ-12, respectively.

  • PDF

Inactivation of Escherichia coli O157:H7, Salmonella and Listeria monocytogenes by Organic Acid (유기산이 Escherichia coli O157:H7, Salmonella 및 Listeria monocytogenes의 증식에 미치는 영향)

  • Jang, Jae-Seon;Lee, Hye-Jeong;Oh, Bo-Young;Lee, Jea-Mann;Go, Jong-Myeong;Kim, Yong-Hee
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.5
    • /
    • pp.403-407
    • /
    • 2007
  • The inhibitory effect of the food processing agent on growth of Escherichia coli O157:H7, Salmonella Enteritidis, and Listeria monocytogenes was performed with organic acid, and combination of citric acid, acetic acid, propionic acid and vanillic acid. The minimun inhibitory concentration(MIC) of propionic acid was 5,000 ppm in E. coli O157:H7, 2,500 ppm in Salmonella Enteritidis and Listeria monocytogenes. MIC of citric acid was 10,000 ppm in E. coli O157:H7 and Salmonella Enteritidis, 2,500 ppm in Listeria monocytogenes. MIC of acetic acid was 2,500ppm, while in vanillic acid was 5,000 ppm in Escherichia coli O157:H7, Salmonella Enteritidis, and Listeria monocytogenes. MIC of combined organc acid in E. coli O157:H7 were 2,500ppm in PC, 1,250 ppm in PA, PV, CA, CV and AV. MIC of combined organc acid in Salmonella Enteritidis were 2,500 ppm in PC, PA, PV, CA, and CV, 1,250 ppm in AV. MIC of combined organc acid in Listeria monocytogenes were 1,250 ppm in all treatment group. MIC of combined treatment of three organc acid in E. coli O157:H7, S. Enteritidis and L. monocytogenes were 1,250 ppm in PCA, PCV, PAV and CAV. The inhibitory effect of organc acid in E. coli O157:H7, S. Enteritidis and L. monocytogenes could be confirmed from the result of this experiment. Therefore, it was expected that the food process would increase or maintain by using organic acid.

E. coli Disinfection Using a Multi Plasma Reactor (멀티 플라즈마 반응기를 이용한 E. coli 소독)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.2
    • /
    • pp.187-195
    • /
    • 2013
  • Objectives: For the practical application of the dielectric barrier discharge plasma reactor, a plasma reactor able to manage large volumes of water is needed. This study investigated the possibility of the practical application of a multi-plasma reactor which is a scaled-up version of a single plasma reactor. Methods: The multi-plasma reactor consists of several high-voltage transformers and plasma modules (discharge, ground electrodes and quartz dielectric tubes). The effects of water characteristics such as voltage (30-120 V), air flow rate (1-5 l/min), number of high-voltage transformers and plasma modules, and water quality on Escherichia coli (E. coli) disinfection and decrease of COD and $UV_{254}$ absorbance were investigated. Results: The experimental results showed that at a voltage of over 80 V, most of the E. coli were disinfected within 90 seconds. E. coli inactivation was not affected by the air flow rate. E. coli disinfection in the multiplasma process showed the traditional log-linear form of the disinfection curve. E. coli inactivation performance by transformer 3-Reactor 5 and transformer 3-Reactor 3 were similar. The disinfection performance of the UV process was affected by artificial sewage water. However, the plasma process was less affected by the artificial sewage within the standards for effluent water quality. Conclusions: Disinfection performance with several low voltages and plasma modules of three to five in number applied to the plasma process was higher than that concentrating a small amount of high voltage through a single plasma reactor. Removal of COD, $UV_{254}$ absorbance, and E. coli disinfection with the plasma process were better than with the UV process.