Background: This study was conducted to investigate the effects of germination temperature, storage container and storage temperature on Scrophularia buergeriana and Scrophularia takesimensis seeds. Methods and Results: Seed lengths of both species were 0.8 mm, while seed width differed, with S. buergeriana measuring 0.5 mm and S. takesimensis measuring 0.4 mm. The seeds of S. buergeriana were packaged in paper containers under room temperature ($15^{\circ}C$), cold temperature ($4^{\circ}C$), and freeze temperature ($-20^{\circ}C$). These seeds exhibited around 80% germination rate at temperatures between $15^{\circ}C$ and $30^{\circ}C$. The germiantion rate of S. takesimensis, on the other hand, differed significantly at different germination temperatures. Seeds of S. takesimensis which were packaged in vinyl and paper containers and stored under room and cold temperatures, exhibited around 80% germination rate at $15^{\circ}C$. However, the germination rate of freeze-stored seeds were decreased to lower than 20% at germination temperatures of $15^{\circ}C$, $25^{\circ}C$ and $30^{\circ}C$ germiantion conditions. The rate of germination showed a low positive to a significantly negativie correlation with the other factor that were determined to evaluate the germination performance. Conclusions: This study elucidates the most suitable germination and storage conditions to increase the germination rate for the two species of Scrophularia buergeriana and Scrophularia takesimensis needs to be stored in paper containers under cold temperature and requires a temperature of $20^{\circ}C$ for germination. On the other hand, S. takesimensis in vinyl containers need to be stored at room temperature and those in paper containers at cold temperature, and a temperature of $15^{\circ}C$ is required for germination.
Lee, Jeong Hoon;Lee, Sang Hoon;An, Chan Hoon;Lee, Yun Ji;Kim, Young Guk;Cha, Sun Woo;Kim, Seong Min
Korean Journal of Medicinal Crop Science
/
v.23
no.4
/
pp.305-310
/
2015
This study was conducted to obtain the basic data related to seed characteristics and germination conditions of the Coriandrum sativum L. at different storage condition and temperature. The shape of fruit was oval with light brown color. Fruit was mericarp, biloculate, with one ovule in each locus. The length and width of seed were $1.37{\pm}0.067mm$ and $0.52{\pm}0.039mm$, respectively. Weight of 1,000 seeds was $6.55{\pm}0.15g$. Seeds which were stored at room ($15^{\circ}C$) and cold temperature ($4^{\circ}C$) in vinyl container showed the highest germination rate (93.3%) under the room temperature germination condition. Percentage of germination in cold and freeze temperature was 20% and 0%, respectively. Germination rate of room storage seeds with paper container increased to about 91.3%, however, decreased in cold ($4^{\circ}C$) and freeze storage ($-20^{\circ}C$) with paper container (76.7% and 78.0%, respectively). Germination rate of seed in vinyl stock container was better than that of paper stock container. Germination rate of seeds stored at room temperature for 4 years (2010 - 2013) ranged from 80.0% to 91.3%. Therefore, coriander seeds are expected to be stored at room temperature for increasing the germination rate and keeping a long term.
Byoung Il Je;Joonng Suk Jeon;Jum-Soon Kang;Young Whan choi
Journal of Environmental Science International
/
v.32
no.1
/
pp.77-88
/
2023
Kadsura coccinea (Lem.) A.C. Smith is used as a medicinal plant and cosmetic material in China and Southeast Asia. To mass-produce Kadsura coccinea seedlings, the effects of gibberellic acid (GA3) and cold stratification treatments on seed germination were investigated. Seed germination rate with GA3 treatment was most effective at concentrations of 250 or 500 mg/L. With respect to mean germination time (MGT), mean daily germination, and T50 (days to reach 50% seed germination), the germination-promoting effect was improved as the concentration of GA3 increased. Stem growth of seedlings was the highest following GA3 treatments of 250 and 500 mg/L, and the growth promoting effect gradually decreased as the concentration of GA3 decreased. Root growth was stimulated at GA3 concentrations of 250-1,000 mg/L. Examination of the effect of stratification treatment for 15, 30 and 60 days at temperatures of 0, 5 and 10℃ on the germination rate revealed that the most stratification treatment temperature was 10℃, and the results improved with longer treatment periods. Altogether, GA3 and stratification treatments improved the seed germination rate, shortened the MGT, improved germination uniformity, and produced healthy seedlings.
Seung Hyuk Yang;Young Hyun Kwon;Ye Eun Kim;Chung Ho Ko;Seung Youn Lee;Yong Ha Rhie
Korean Journal of Environmental Agriculture
/
v.42
no.4
/
pp.324-330
/
2023
This study was conducted to determine the dormancy types and optimal germination conditions of Prunus mandshurica seeds. The pericarp of P. mandshurica seeds was presumed to be the reason for their poor water absorption. After the pericarp was removed with a razor blade, germination was observed to be less than 20.0% at all temperatures except at 5℃, suggesting the presence of physiological dormancy. Germination gradually increased at 5℃ after the removal of seed coat, reaching a final germination rate of 86.7% at 14 weeks of incubation. Based on these results, P. mandshurica seeds have a physiological dormancy. When seeds with removed pericarp were subjected to cold stratification, the germination percentage (rate) in the control group was low even at 16 weeks; however, the germination percentages in the 4, 8, and 12-week cold stratification groups were notably high with 93.3, 73.3, and 100.0%, respectively. The control group in the GA3 treatment experiment with seed coats removed showed minimal germination, but at 10 weeks, the germination percentage rose to 98.3% when treated with GA3 at 100 mg/L. Thus, it is necessary to scarify or completely remove the pericarp of P. mandshurica seeds to promote germination. After pericarp removal, it is important to subject the seeds to cold stratification at 5℃ for at least 4 weeks or treat them with GA3 at 100 mg/L.
In oder to find out the effective seed germination testing method to the field emergence, an experiment was conducted ; 1. TTC testing results were higher percentage than any other germination testing methods . 2. On the corn seed , field emergence was highly correlated with germinator test, TTC test and AA test hut cold test was lower percentage . 3. Field emergence , on the soybean seeds was highly correlated with AA test and cold test but germinator test and TTC test was higher percentage .
Suh, Su Jeoung;Jang, In Bae;Jang, In Bok;Moon, Ji Won;Yu, Jin
Korean Journal of Medicinal Crop Science
/
v.27
no.6
/
pp.390-396
/
2019
Background: Usually ginseng seeds are sown during autumn and spring. Sowing in spring often results in poorer seedling establishment than in autumn. One of the reasons for poor germination could be cold-treatment condition for breakage of physiological dormancy during winter. Here we tested the effects of storage temperature used during cold treatment on germination. Methods and Results: Germination properties were observed after dehiscent seeds were stored as wet and dry at 2℃, -2℃, -3.5℃ and alternating temperature (AT). Seed dryness and storage temperature affected germination properties (p < 0.01). Wet and AT condition germinated highest, and wet and -3.5℃ condition germinated lowest, which was 91.2% and 1.4% respectively. Mean germination time (MGT) of the wet and AT condition was faster than other treatments at 2.4 days, and the dry and -2℃ condition was the longest. Germination performance index (GPI) was highest for wet and AT condition (37.7%) and the lowest for wet and -3.5℃ condition (0.5%). The growth of above-ground and below-ground were the best for wet and 2℃ condition, and wet seeds showed better growth than dry seeds (p < 0.01). Conclusions: For cold treatment, ginseng seeds may not be stored below -2℃ for successful germination during spring sowing.
Germination percentage of Korean native lily seeds was high at $20-25^{\circ}C$. It was almost 100% in L. cernuum, L. callosum, L. amabile, and L. concolor, 88.0% in L. lancifolium, and 73.0% in L. maximowitzii, respectively. Meanwhile, it was low rate of 34.0%-54.0% in L. distichum, L. hansonii, and L. tsingtauense. Germination was mostly delayed of $15^{\circ}C$ and days to germination were more shortened in species with higher germination percentage. Even though the effect of daylength was not considerable in germination rate, it was promoted in L. maximowitzii but it was delyed in L. hansonii under long day. The effect of soaking in hot PGRs solution in L. callosum, L. cernuum, L. amabile, L. lancifolium, and L. concolor did not show any difference in comparison with non-treatment. However, it was improved by BA in L. maximowitzii. Longer period of cold wet storage resulted in improved germination percentage in L. maximowitzii and L. lancifolium, while it affected decreased percentage in L. distichum and L. hansonii. Days to germination were shortened by longer period of cold wet storage regardless of species. Germination percentage in dry storage was higher under cold temperature than room temperature and under desiccator storage than outside desiccator, it was highest under desiccator storage at $4^{\circ}C$. It was drastically reduced by the non-use desiccator storage at room temperature L. concolor, however it was improved only by the use of desiccator L. maximowitzii for a long time.
Storage rough rice in low temperature using the winter cold air avoids rough rice temperature increase which happens from early May, and this is possible by installing a cooling system in the top of a bin, the room between top rice level and bin ceiling. The research objective is to establish low temperature rough rice storage technique, furnishing winter cold air to rough rice, by investigating the cooling system potential of maintaining low rough rice temperature and by analyzing rough rice storage characteristics over a storage period. The rough rice storage characteristics were evaluated from January to August 2003, using a storage and dry bin of 400-ton capacity. Results of this research are as follows: Cooling bin using the cooling system in the top of the bin maintained the rice temperature less than 15$^{\circ}C$ in entire portions in August. Moisture contents and germination rates of rough rice were decreased over the storage period, on the other hand, the rough rice stored in the ambient temperature bin had relatively lower moisture contents and germination rates to compare with the bin using winter cold air. Crack ratio and acid value of brown rice in the ambient temperature bin storage had increased more than the cooling bin storage. The result indicates that the storage bin using winter cold air and the cooling system maintains moisture content and germination of rice, minimizes cracked kernel and acid value, and preserves rice quality as well.
The performance of 7 sugary (su) and 12 shrunken-2 (sh2) sweet com hybrids which are commercially grown in the United States was tested in Korea. The 100-seed weight of su hybrids (16.5-23.6 g) was much heavier compared to that of sh2 hybrids (10.9-17.5 g). The germination rate of su and sh2 hybrids at $25^{\circ}C$ ranged 93.3-100% and 86.7-98.9%, the emergence rate of su and sh2 hybrids in cold test ranged 78.9-97.8% and 62.2-97.8%, and field emergence rate of su and sh2 hybrids ranged 74.4-100.0% and 79.9-98.2%, respectively. In su hybrids, there was a significantly positive correlation between germination rate at $25^{\circ}C$ and emergence rate in cold test or early growth. In contrast, in sh2 hybrids seed weight was positively correlated with early plant growth, while not with the germination rate at $25^{\circ}C$ or emergence rate in cold test and field. Most sh2 hybrids produced larger and more marketable ears compared to su hybrids although there were significant differences among the hybrids in the same genotype. At harvest (24 days after pollination) soluble solids content of su hybrids (24.3-27.1 Brix %) was much higher than that of sh2 hybrids (13.8-18.0 Brix %), while total sugars of sh2 hybrids (21.4-28.6% on the dry weight basis) was much higher compared to su hybrids (2.4-15.9%). Considering germination and emergence rates, marketable ear production, and total sugar content, 'GCB 70' and 'Sweet Satin' in su hybrids and 'Ice Queen', 'Aspen', 'Sweet Magic', 'Bandit', 'Xtrasweet 82', 'Aspen', and 'Cambella 90' in sh2 hybrids performed better than other hybrids.
Suh, Su Jeoung;Jang, In Bae;Yu, Jin;Jang, In Bok;Park, Hong Woo;Seo, Tae Cheol;Kweon, Ki Bum
Korean Journal of Medicinal Crop Science
/
v.25
no.4
/
pp.209-216
/
2017
Background: Dehisced ginseng seeds need to be stored at cold temperatures for around 3 months to break their physiological dormancy, and thus, to aid in gemination. In the presence of high moisture in such an environment, seed spoilage and pre-germination may lower seed quality and productivity. To improve seed quality during cold-stratification, the effects of seed dehydration and temperature were tested. Methods and Results: In early December, dehisced ginseng seeds were dehydrated at 4 different levels and stored at $2^{\circ}C$$-2^{\circ}C$, and $-20^{\circ}C$ for 3 months. Germination was carried out on the filter papers moistened with distilled water; emergence of root, shoot, and seed spoilage were assessed. Seed viability was examined by the tetrazolium test. More than 90% of the seeds stored at $2^{\circ}C$ and $-2^{\circ}C$ without drying or endocarp dehydration germinated, but seeds that were dehydrated to have a moisture content (MC) below 31% showed poor germination and lost their viability. In addition, the seeds stored at $-20^{\circ}C$ failed to show effective germination. Conclusions: Seed storage after endocarp dehydration might help to improve seed quality and increase seedling's ability to stand during the spring-sowing of ginseng.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.