• Title/Summary/Keyword: cold & hot forging

Search Result 52, Processing Time 0.022 seconds

A Study of Metal Technology in Ancient Silla Dynasity (고대신라의 금속기술 연구)

  • 강성군;조종수
    • Journal of the Korean institute of surface engineering
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 1975
  • The crorosion film of gilt bronz, silver and iron objects, which were excaved from Ancient Tomb of Silla Dynasty, was removed by the electrolytic reduction process. These metallic objects were mainly investigated for microstructure, designs and gilting film etc. Most iron objects might be made by hot forging process. The cold extrusion technique might be used for gold and silver objects, in addition to an amalgam method might be applied for the gilting Au film on Cu-alloy surface. For the gilting on glass surface, first, a Cu alloy was cladded on glass , next, Au-film was obtained on the Cu-ally by the amagum method.

  • PDF

Thixoforging Process of Rheology Materials fabricated by Spiral Mechanical Stirring (나선형 기계 교반 레오로지 소재의 이용한 Thixoforging 공정)

  • Han, S.H.;Jung, I.K.;Bae, J.W.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.131-134
    • /
    • 2007
  • A semi-solid forming technology has a lot of advantages compared to the die casting, squeeze casting and hot/cold forging, so semi-solid forming has been studied actively. Semi-solid forming has two methods. One is thixoforming with reheating of prepared billet, the other is rheoforming with cooled melt until semi-solid state. Thixoforging technology can produce non-dendritic alloys for semi-solid forming complex shaped parts in metal alloys. In this study, the thixoforging was experimented with made rheology materials by the spiral stirrer equipment. Rheology materials for forging were made by A356 casting aluminum alloy and A6061 wrought aluminum alloy. After experiment, forged samples were measured microstructure and were heat treated for high mechanical properties.

  • PDF

A Filling Analysis on Forging Process of Semi-Solid Aluminum Materials Considering Solidification Phenomena (응고현상을 고려한 반용융 알루미늄재료의 단조공정에 관한 충전해석)

  • 강충길;최진석;강동우
    • Transactions of Materials Processing
    • /
    • v.5 no.3
    • /
    • pp.239-255
    • /
    • 1996
  • A new forming technology has been developed to fabricate near-net shape products using light metal. A semi-solid forming technology has some advantages compared with the conventional forming processes such as die casting squeeze casting and hot/cold forging. In this study the numerical analysis of semi-solid filling for a straight die shape and orifice die shape in gate pattern is studied on semi-solid materials(SSM) of solid fraction fs =30% in A356 aluminum alloy. The finite difference program of Navier-Stokes equation coupled with heat transfer and solidification has been developed to predict a filling pattern and the temperature distribution of SSM. The programdeveloped in this study gives die filling patterns of SSM and final solidifica-tion region.

  • PDF

Weldability of Low-Carbon ASTM A356 CA6NM Martensitic Stainless Steel Casting for Power Plants (발전용 저탄소 ASTM A356 CA6NM 마르텐사이트계 스테인리스 주강의 용접성)

  • Bang, Kook-soo;Park, Chan;Lee, Joo-young;Lee, Kyong-woon
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.73-78
    • /
    • 2011
  • Weldability, especially HAZ cold cracking, weld metal solidification cracking, and HAZ liquation cracking susceptibilities, of ASTM A356 CA6NM martensitic stainless steel casting was investigated and compared with that of 9-12% Cr ferritic steel castings. Irrespective of the Cr and Ni content in the castings, the HAZ maximum hardness increased with an increase of carbon content. CA6NM steel, which has the lowest carbon content, had the lowest HAZ hardness and showed no cold cracking in y-slit cracking tests. CA6NM steel, meanwhile, showed the largest weld metal solidification cracking susceptibility in varestraint tests because of its higher amount of impurity elements, phosphorus, and sulfur. All castings investigated had good high temperature ductility in hot ductility tests and showed little difference in liquation cracking susceptibility.

Analysis of A356 alloys filling behavior considering Two-Phase flow (Two-Phase Flow를 이용한 A356 합금의 충전거동 해석)

  • Seol, D.E.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.425-428
    • /
    • 2006
  • A semi-solid forming technology has some advantages compared with conventional forming processes such as die casting, squeeze casting and hot/cold forging. In this study, the numerical analysis of semi-solid filling has been studied with solid fraction fs = 30% of A356 aluminum alloys. The finite difference program of two-phase flow model of Navier Stokes' equation coupled with heat transfer and solidification has been developed to predict a filling pattern, liquid segregation and temperature distribution of semi-solid metals. It gives die filling patterns and final solidification area. It can predict mechanical properties of semi-solid forming processes.

  • PDF

Consideration on Frictional Laws and their Effect on Finite Element Solutions in Bulk Metal Forming (체적소성가공에서 마찰법칙이 유한요소해석 결과에 미치는 영향에 관한 고찰)

  • Joun, M.S.;Moon, H.K.;Hwang, S.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.102-109
    • /
    • 1996
  • Effects of frictional laws on finite element solutions in metal forming were investigated in this paper. A rigid-viscoplastic finite element formulation was given with emphasis on the frictional laws. The Coulomb friction and the constant shear friction laws were compared through finite element analyses of compression of rings and cylinders with different aspect ratios, ring-gear forging, multi-stage cold extrusion and hot strip rolling under the isothermal condition. It has been shown that two laws may yield quite different results when the aspect ratio of a process and the fractional contact region are large.

  • PDF

Effect of Viscosity Variation on Flow Characteristic in Thixoforming Process of Semi-Solid Aluminium Alloys (반용융 알루미늄 합금의 Thixoforming 공정에서 점도의 변화가 유도특성에 미치는 영향)

  • 강충길;이유철
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.188-199
    • /
    • 1999
  • Semi-Solid Forming Process(Thixoforming, Rheocasting) is a novel forming process which has some advantages compared with conventional die casting, squeeze casting and hot/cold forging. In this study. Thixoforming process was selected as analysis processing in terms of billet handling and easiness of automation process. The Thixoforming process consists of reheating process of billet, billet handling, filling inot the die cavity and solidification of SSM part. In filling process, two rheology models which were Newtonian and Non-Nettonian model (Ostwald-deWaele)were verified with experimental results. The Ostwald-deWaele model shows the good agreement to the real flow and filling phenomena in die cavity. To give a boost the economical efficiency of Thixoforming process and to ensure the good forming result, reheating device coupled die set was proposed and the initial billet temperature for system that was found from experimental resluts. This study presents an overview of application of numerical analysis for simulation of semi-solid metal forming process to reduce the lead time for development of manufacturing part in industrial field.

  • PDF

Thixoforging Process of Rheology Materials Fabricated by Spiral Mechanical Stirring Equipment (나선형 기계 교반 장비로 제조된 레오로지 소재의 Thixoforging 공정)

  • Jung, I.K.;Han, S.H.;Bae, J.W.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.17 no.1
    • /
    • pp.5-8
    • /
    • 2008
  • As the semi-solid forming technology has a lot of advantages compared to the die casting, squeeze casting and hot/cold forging, it has been studied actively. This paper focuses on the thixoforging of the rheological materials fabricated by the spiral mechanical stirring equipment with A356 casting aluminum alloy and A6061 wrought aluminum alloy. Formability tests of rheological materials fabricated by spiral mechanical stirring were carried out and the microstructures of forged sample were observed. After thixoforging experiment, the heat-treated conditions of forged samples are investigated to improve the mechanical properties. These results are able to suggest the possibility of commercialization for rheological materials fabricated by spiral mechanical stirring.

Microstructures and Mechanical Characteristics of Advanced Cold-Work Tool Steels: Ledeburitic vs. Matrix-type Alloy (고성능 냉간금형강의 미세조직과 기계적 특성: 레데부라이트(ledeburitic) 및 매트릭스(matrix)형 강종의 비교)

  • Kang, Jun-Yun;Kim, Hoyoung;Son, Dongmin;Lee, Jae-Jin;Yun, Hyo Yun;Lee, Tae-Ho;Park, Soon Keun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.4
    • /
    • pp.181-189
    • /
    • 2015
  • Two types of advanced cold-work tool steels were characterized and compared. A higher-alloyed ledeburitic steel with primary carbides (denoted as 9Cr) and a lower-alloyed steel without primary carbides (5Cr) were fabricated by vacuum induction melting and subsequent hot forging. They were spheroidizing-annealed at $870^{\circ}C$, quenched at $1030^{\circ}C$ and tempered at 180 or $520^{\circ}C$. Their machinability after annealing and hardness, impact toughness, wear resistance after tempering were compared and interpreted in association with their characteristic microstructures. After annealing, 5Cr showed higher resistance to machining due to higher ductility and toughness in spite of lower strength and smaller carbide volume. Owing to smaller carbide volume fraction and the absence of coarse primary carbides, 5Cr showed even better impact toughness although the hardness was lower. The improved toughness of 5Cr resulted in excellent wear resistance, while smaller volume fraction of retained austenite also contributed to it.

Variation in Microstructural Homogeneity and Mechanical Properties of Extruded Mg-5Bi Alloy Via Controlling Billet Shape (빌렛 형상 제어를 통한 Mg-5Bi 합금 압출재의 조직 균일도 및 기계적 물성 변화)

  • Jin, S.C.;Cha, J.W.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.6
    • /
    • pp.344-350
    • /
    • 2022
  • Extruded Mg-Bi binary alloys are known to have an undesirable bimodal grain structure containing a large amount of coarse unrecrystallized grains. Accordingly, to improve the microstructural homogeneity of extruded Mg-Bi alloys, it is necessary to promote the dynamic recrystallization (DRX) behavior during hot extrusion. An effective way to promote DRX is an increase in nucleation sites for DRX through a pre-deformation process before extrusion, such as cold pre-forging and hot pre-compression. However, the application of these pre-deformation processes increases the cost of final extruded Mg products because of an increase in energy consumption and decrease in productivity. Therefore, a low-cost new continuous process with high productivity is required to improve the microstructural homogeneity and mechanical properties of extruded Mg alloys without a drastic increase in the entire process cost. This study proposes a new extrusion method using an extrusion billet with a truncated cone shape (i.e., tapered billet) instead of a conventional extrusion billet with a cylindrical shape. When the hot extrusion of a Mg-5Bi alloy is conducted using the tapered billet, the DRX behavior during extrusion is considerably promoted. The DRX fraction and average grain size of the extruded alloy significantly increase and decrease from 65% to 91% and from 225 ㎛ to 49 ㎛, respectively. Consequently, the extruded Mg-5Bi alloy fabricated using the tapered billet has a finer homogeneous grain structure and higher tensile elongation than the extruded counterpart fabricated using the cylindrical billet.