• Title/Summary/Keyword: coincidence summing

Search Result 15, Processing Time 0.02 seconds

Evaluate the usefulness of Coincidence Summing Correction Factors for Cylinder and Extended Source Penelope Simulation (실린더 및 확장 소스 PENELOPE 시뮬레이션에 대한 동시합성보정 계수 유용성 평가)

  • Jang, Eun-Sung;Chang, Bo-Seok
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.821-831
    • /
    • 2021
  • In order to calibrate energy and efficiency using the PENELOPE Code, a PENELOPE simulation was performed using a volume source. Here, we want to verify peak efficiency and usefulness by performing simultaneous measurement and correction. calculate the coincident sum correction for all volumes, first subdivide the volumes of the cylinder and the four Marinelli beakers into three heights again. Therefore, the simultaneous measurement correction coefficient in three areas and the simultaneous measurement correction coefficient for the entire volume source are calculated as output. At low energies, the j value for each source volume (50-300 ml) is small and increases significantly in the high energy range. Simulation results showed good agreement within 2.5% for all source volumes except for 50 ml and 300 ml, which were up to 4%. This means that the correction for the simultaneous measurement effect during measurement is effective. In addition. Based on this, it can be confirmed that there is an advantage to improve the detection efficiency when measuring various sources and environmental samples.

Calibration of cylindrical NaI(Tl) gamma-ray detector intended for truncated conical radioactive source

  • Badawi, Mohamed S.;Thabet, Abouzeid A.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1421-1430
    • /
    • 2022
  • The computation of the solid angle and the detector efficiency is considering to be one of the most important factors during the measuring process for the radioactivity, especially the cylindrical γ-ray NaI(Tl) detectors nowadays have applications in several fields such as industry, hazardous for health, the gamma-ray radiation detectors grow to be the main essential instruments in radiation protection sector. In the present work, a generic numerical simulation method (NSM) for calculating the efficiency of the γ-ray spectrometry setup is established. The formulas are suitable for any type of source-to-detector shape and can be valuable to determine the full-energy peak and the total efficiencies and P/T ratio of cylindrical γ-ray NaI(Tl) detector setup concerning the truncated conical radioactive source. This methodology is based on estimate the path length of γ-ray radiation inside the detector active medium, inside the source itself, and the self-attenuation correction factors, which typically use to correct the sample attenuation of the original geometry source. The calculations can be completed in general by using extra reasonable and complicate analytical and numerical techniques than the standard models; especially the effective solid angle, and the detector efficiency have to be calculated in case of the truncated conical radioactive source studied condition. Moreover, the (NSM) can be used for the straight calculations of the γ-ray detector efficiency after the computation of improvement that need in the case of γ-γ coincidence summing (CS). The (NSM) confirmation of the development created by the efficiency transfer method has been achieved by comparing the results of the measuring truncated conical radioactive source with certified nuclide activities with the γ-ray NaI(Tl) detector, and a good agreement was obtained after corrections of (CS). The methodology can be unlimited to find the theoretical efficiencies and modifications equivalent to any geometry by essential sufficiently the physical selective considered situation.

The Effect of Applying Self-absorption and Coincidence Summation Correction when Measuring Environmental Samples (환경시료 측정 시 자체흡수 및 동시합성 보정 적용 효과)

  • Eun-Sung Jang;Byung-In Min
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.531-539
    • /
    • 2023
  • Self-absorption is the most important factor affecting the accuracy of gamma spectroscopy measurements in environmental samples. In particular, it is affected by other factors such as the chemical composition of the sample, geometric shape, thickness, density, atomic number, distance between the sample and detector, energy of the emitted gamma photon, and humidity coefficient or percentage in the sample. To test the calibration method, a 450 ml CRM standard source (9 nuclide) Marinelli beaker was used. Five soil samples among environmental samples were measured by density by applying the corrected values. Therefore, it can be seen that the self-absorption value is more effective for somewhat large and low photon energy. In the case of environmental samples, it was confirmed that the overall energy peak efficiency through self-absorption of the source greatly depends on the density of the sample.

Nuclide Identification of Gamma Ray Energy Peaks from an Air Sample for the Emergency Radiation Monitoring (비상시 환경방사능 모니터링을 위한 공기부유진 시료의 감마선에너지 스펙트럼에 대한 핵종판별)

  • Byun, Jong-In;Yoon, Seok-Won;Choi, Hee-Yeoul;Yim, Seong-A;Lee, Dong-Myung;Yun, Ju-Yong
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.4
    • /
    • pp.170-175
    • /
    • 2009
  • For the emergency radiation monitoring using gamma spectrometry, we should sufficiently survey the background spectra as environmental samples with systematic nuclide identification method. In this study, we obtained the gamma ray energy spectrum using a HPGe gamma spectrometry system from an air sample. And we identified nuclide of the gamma ray energy peaks in the spectrum using two methods -1) Half life calculation and 2) survey for cascade coincidence summing peaks using nuclear data. As the results, we produced the nuclide identification results for the air sample.

Efficiency calibration of a coaxial HPGe detector-Marinelli beaker geometry using an 152Eu source prepared in epoxy matrix and its validation by efficiency transfer method

  • Yucel, Haluk;Zumrut, Senem;Nartturk, Recep Bora;Gedik, Gizem
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.526-532
    • /
    • 2019
  • In this study, an in-house $^{152}Eu$ calibration source was produced from a custom epoxy matrix with a density of ${\rho}=1.14g\;cm^{-3}$, which is chemically stable and durable form after its solidification. The homogeneity of $^{152}Eu$ in matrix was obtained better than 98%. For a Marinelli beaker geometry, an efficiency calibration procedure was applied to a n-type, coaxial, 78.5% relative efficient HPGe detector in the energy range of 121.7-1408.0 keV by using in-house $^{152}Eu$ calibration source. Then the measured efficiencies for Marinelli geometry were compared with the results calculated by MEFFTRAN and ANGLE softwares for the validation. Although MEFFTRAN and ANGLE have two different efficiency transfer algorithms to calculate the efficiencies, they usually need to use a reliable and accurate reference efficiency values as input data. Hence, reference efficiency values were obtained experimentally from a multinuclide standard source for the same detector-Marinelli geometry. In the present source characterization, the corrections required for self-absorption and true coincidence summing effects for $^{152}Eu$ gamma-rays were also obtained for a such close counting geometry condition. The experimental results confirmed the validity of efficiency calculations obtained by MEFFTRAN and ANGLE softwares that are calculation tools.