• Title/Summary/Keyword: coherent radiation

Search Result 26, Processing Time 0.024 seconds

Novel nonequilibrium microwave emission and current-voltage characteristics of $Bi_2$$Sr_2$Ca$Cu_2$$O_{8+d}$ intrinsic Josephson junction mesas

  • Kim, Sun-Mi;Lee, Kie-Jin;Bae, Myung-Ho;Lee, Hu-Jong;Cha, Deok-Joon;Takayuki Ishibashi;Katsuaki Sato;Kim, Jin-Tae
    • Progress in Superconductivity
    • /
    • v.4 no.2
    • /
    • pp.104-108
    • /
    • 2003
  • We have measured the transport properties of $Bi_2$$Sr_2$$CaCu_2$$O_{8+d}$ (BSCCO) intrinsic Josephson junction mesa. Transport measurements with current flow along the c-axis, perpendicular to the layer of mesa showed multi-branch structures on the current-voltage characteristics. For single intrinsic junctions, the microwave radiation appears in the form of three different modes of oscillations, which include Josephson emission, nonequilibrium broad emission and sharp coherent microwave emission. Mutual phase interactions between two-mesas structures of BSCCO intrinsic Josephson junctions were studied. The results were explained within the framework of the Josephson plasma excitation model due to quasiparticle injection.n.

  • PDF

Status and Prospect of Free Electron Lasers (자유전자레이저의 개발현황과 전망)

  • Lee, Byung-Cheol;Jeong, Young-Ug;Park, Seong-Hee;Hahn, Sang-June
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.435-450
    • /
    • 2006
  • Free electron lasers (FELs) are promising sources of coherent radiation that can provide users with radiations having a wide-range frequency-tunability and good spectral characteristics for basic science and industrial applications. Especially in Terahertz or X-ray ranges of spectrum, FELs can generate much stronger radiations than conventional light sources. In this paper, we introduce the working principles and key technologies of FELs, the status and the prospects of FEL developments.

Spatial and Temporal Electrodynamics in Acuzones: Test-Induced Kinematics and Synchronous Structuring. Phenomenological Study

  • Babich, Yuri F.;Babich, Andrey Y.
    • Journal of Acupuncture Research
    • /
    • v.38 no.4
    • /
    • pp.300-311
    • /
    • 2021
  • Background: So far there is no confidence in the basics of acupoint/meridian phenomena, specifically in spatial and temporal electrical manifestations in the skin. Methods: Using the skin electrodynamic introscopy, the skin areas of 32 × 64 mm2 were monitored for spectral electrical impedance landscape with spatial resolution of 1 mm, at 2 kHz and 1 MHz frequencies. The detailed baseline and 2D test-induced 2 kHz-impedance phase dynamics and the 4-parameter time plots of dozens of individual points in the St32-34 regions were examined in a healthy participant and a patient with mild gastritis. Non-thermal stimuli were used: (1) (for the sick subject), microwaves and ultraviolet radiation applied alternately from opposite directions of the meridian; and (2) (for the healthy one) microwaves to St17, and cathodic/anodic stimulation of the outermost St45, alternately. Results: In both cases, the following phenomena have been observed: emergence of in-phase and/or antiphase coherent structures, exceeding the acupoint conditional size of 1 cm; collective movement along the meridian; reversible with a reversed stimulus; counter-directional dynamics of both whole structures and adjacent points; local abnormalities in sensitivity and dynamics of the 1 MHz and 2 kHz parameters indicating existence of different waveguide paths. Conclusion: It is assumed that these findings necessitate reconsideration of some basic methodological issues regarding neurogenic/acupuncture points as spatial and temporal phenomena; this requires development of an appropriate approach for identifying the acuzones patterns. These findings may be used for developing new approaches to personalized/controlled therapy/treatment.

A Study on Visual Perception of Hologram Advertisement (홀로그램 매체를 활용한 광고의 시각인지도에 관한 연구)

  • Cho, Yong-Jae
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.12
    • /
    • pp.261-268
    • /
    • 2006
  • A hologram is a three-dimensional image reproduced from a pattern of interference produced by a split coherent beam of radiation. Therefore not only can it express the three dimensional properties of the object, but because of it ability to show the depth and spatial properties of the object holograms may be a more effective tool in advertising for its visual appeal. This study presents 'hologram'a three dimensional stereo imaging, as the expression technique in advertising of the next generation, and with proper understanding of 'hologram' and of all its potential applications discusses opportunities for advertisements that are distinct from the multi media advertisements of today. The basic concept of Holograms and their application methods were presented in the thesis, and by using Sales Promotion advertisement as example, discussed what elements are required in order to produce an effective advertisement using holograms.

  • PDF

Top and Bottom Symmetrical Loop Antenna for Multi-media Devices (멀티미디어단말기용 상하대칭 루프 안테나)

  • Shin, Cheon-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.3
    • /
    • pp.414-422
    • /
    • 2011
  • The paper is for top and bottom symmetrical phase controlled loop antenna using for multi-media devices. We developed a top and bottom phase control loop pattern arrangement methods for loop antenna in mobile devices like as a cell phone and PCS, WCDMA. In the loop antenna pattern, arrange close adhesive the loop antenna pattern $180^{\circ}$ cycle in wave length, the radiated electro-magnetic wave from close adhesive loop pattern in $180^{\circ}$ become to coherent wave than the phase controlled loop antenna has high efficiency and high radiation gain. To acquire a wide band width on phase controlled loop antenna, we arrange a top and bottom symmetrical architecture loop pattern that bas a $180^{\circ}$ wave length in each layer. Top and bottom each layer bas a U form pattern separated $90^{\circ}$ wave length each other. This architecture cause a well balanced electro-magnetic flow control that acquired wide bandwidth resonance response in loop pattern antenna. In experiment, we designed a WCDMA mobile multi-media antenna in $40mm{\times}6mm$ area thickness 0.2mm, in that passive experiment the radiation efficiency is over 50% and over 0dBi radiation average gain was acquired, in the active experiment in real multi-media device we acquired -4dBi average gain and 43% transmit/receive efficiency.

Study of Coherent High-Power Electromagnetic Wave Generation Based on Cherenkov Radiation Using Plasma Wakefield Accelerator with Relativistic Electron Beam in Vacuum (진공 내 상대론적인 영역의 전자빔을 이용한 플라즈마 항적장 가속기 기반 체렌코프 방사를 통한 결맞는 고출력 전자파 발생 기술 연구)

  • Min, Sun-Hong;Kwon, Ohjoon;Sattorov, Matlabjon;Baek, In-Keun;Kim, Seontae;Hong, Dongpyo;Jang, Jungmin;Bhattacharya, Ranajoy;Cho, Ilsung;Kim, Byungsu;Park, Chawon;Jung, Wongyun;Park, Seunghyuk;Park, Gun-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.6
    • /
    • pp.407-410
    • /
    • 2018
  • As the operating frequency of an electromagnetic wave increases, the maximum output and wavelength of the wave decreases, so that the size of the circuit cannot be reduced. As a result, the fabrication of a circuit with high power (of the order of or greater than kW range) and terahertz wave frequency band is limited, due to the problem of circuit size, to the order of ${\mu}m$ to mm. In order to overcome these limitations, we propose a source design technique for 0.1 THz~0.3 GW level with cylindrical shape (diameter ~2.4 cm). Modeling and computational simulations were performed to optimize the design of the high-power electromagnetic sources based on Cherenkov radiation generation technology using the principle of plasma wakefield acceleration with ponderomotive force and artificial dielectrics. An effective design guideline has been proposed to facilitate the fabrication of high-power terahertz wave vacuum devices of large diameter that are less restricted in circuit size through objective verification.