• Title/Summary/Keyword: cognitive wireless network

Search Result 117, Processing Time 0.021 seconds

Throughput Capacity of a Wireless Multi-hop Relay Network using Cognitive Radio (Cognitive Radio 무선 다중홉 릴레이 네트워크의 Throughput 용량)

  • Hassan, Md. Imrul;Song, Ju-Bin;Kim, Young-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.5
    • /
    • pp.33-39
    • /
    • 2007
  • In this paper, we investigate the throughput capacity of a multi-hop relay with cognitive radio (CR) enabled relay stations (RS). We suggest a TDMA/FDMA based frame structure where RSs dynamically select unused channels to communicate with the base station (BS) using CR techniques to analyze the throughput capacity. We develop the throughput capacity model for the proposed system based on utilization factor. The analytical results based on those equations show significant improvement in throughput capacity for CR enabled multi-hop relay system.

Power Allocation Schemes For Downlink Cognitive Radio Networks With Opportunistic Sub-channel Access

  • Xu, Ding;Feng, Zhiyong;Zhang, Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.7
    • /
    • pp.1777-1791
    • /
    • 2012
  • This paper considers a downlink cognitive radio (CR) network where one secondary user (SU) and one primary user (PU) share the same base station (BS). The spectrum of interest is divided into a set of independent, orthogonal subchannels. The communication of the PU is of high priority and the quality of service (QoS) is guaranteed by the minimum rate constraint. On the other hand, the communication of the SU is of low priority and the SU opportunistically accesses the subchannels that were previously discarded by the PU during power allocation. The BS assigns fractions ?? and 1 ?? of the total available transmit power to the PU and the SU respectively. Two power allocation schemes with opportunistic subchannel access are proposed, in which the optimal values of ??'s are also obtained. The objective of one scheme is to maximize the rate of the SU, and the objective of the other scheme is to maximize the sum rate of the SU and the PU, both under the PU minimum rate constraint and the total transmit power constraint. Extensive simulation results are obtained to verify the effectiveness of the proposed schemes.

Throughput and Delay Optimal Scheduling in Cognitive Radio Networks under Interference Temperature Constraints

  • Gozupek, Didem;Alagoz, Fatih
    • Journal of Communications and Networks
    • /
    • v.11 no.2
    • /
    • pp.148-156
    • /
    • 2009
  • The fixed spectrum assignment policy in today's wireless networks leads to inefficient spectrum usage. Cognitive radio network is a new communication paradigm that enables the unlicensed users to opportunistically use the spatio-temporally unoccupied portions of the spectrum, and hence realizing a dynamic spectrum access (DSA) methodology. Interference temperature model proposed by Federal Communications Commission (FCC) permits the unlicensed users to utilize the licensed frequencies simultaneously with the primary users provided that they adhere to the interference temperature constraints. In this paper, we formulate two NP-hard optimal scheduling methods that meet the interference temperature constraints for cognitive radio networks. The first one maximizes the network throughput, whereas the second one minimizes the scheduling delay. Furthermore, we also propose suboptimal schedulers with linear complexity, referred to as maximum frequency selection (MFS) and probabilistic frequency selection (PFS). We simulate the throughput and delay performance of the optimal as well as the suboptimal schedulers for varying number of cognitive nodes, number of primary neighbors for each cognitive node, and interference temperature limits for the frequencies. We also evaluate the performance of our proposed schedulers under both additive white gaussian noise (AWGN) channels and Gilbert-Elliot fading channels.

An Heuristic for Joint Assignments of Power and Subcarriers in Cognitive Radio Networks (인지라디오 네트워크에서 전력과 부반송파 할당을 위한 휴리스틱)

  • Paik, Chun-Hyun
    • Korean Management Science Review
    • /
    • v.29 no.2
    • /
    • pp.65-77
    • /
    • 2012
  • With the explosivley increasing demand in wireless telecommunication service, the shortage of radio spectrum has been worsen. The traditional approach of the current fixed spectrum allocation leads to spectrum underutilization. Recently, CR (Cognitive Radio) technologies are proposed to enhance the spectrum utilization by allocating dynamically radio resources to CR Networks. In this study, we consider a radio resource(power, subcarrier) allocation problem for OFDMA-based CRN in which a base station supports a variety of CUs (CRN Users) while avoiding the radio interference to PRN (Primary Radio Network). The problem is mathematically formulated as a general 0-1 IP problem. The optimal solution method for the IP problem requires an unrealistic execution time due to its complexity. Therefore, we propose an heuristic that gives an approximate solution within a reasonable execution time.

Implementation of a RF transceiver for WRAN System Using Cognitive Radio Technology in TV Whitespace Band (Cognitive Radio 기술 기반의 TV Whitespace대역 WRAN 시스템의 RF 송.수신기 구현)

  • Min, Jun-Ki;Hwang, Sung-Ho;Kim, Ki-Hong;Park, Yong-Woon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5A
    • /
    • pp.496-503
    • /
    • 2010
  • The implementation of a RF transceiver for WRAN(Wireless Regional Area Network) system based on IEEE 802.22 standard using Cognitive Radio technology is presented in this paper. A CMOS RF transceiver IC for WRAN system operates in VHF/UHF(54~862MHz) broadband, and employs dual-path direct-conversion configuration and the in-band harmonic distortions are effectively suppressed by exploiting the dual-path direct conversion architecture. For 64QAM(3/4 coding rate) OFDM signal, an EVM of <-31.4dB(2.7%) has been achieved at 10dBm off-chip PA output power and the total chip area with pads is 12.95 mm2. The experimental results show that the proposed CMOS RF transceiver IC has perfect performance for WRAN system based on TDD(Time Division Duplex) mode.

Implementation and Measurement of Spectrum Sensing for Cognitive Radio Networks Based on LoRa and GNU Radio

  • Tendeng, Rene;Lee, YoungDoo;Koo, Insoo
    • International journal of advanced smart convergence
    • /
    • v.7 no.3
    • /
    • pp.23-36
    • /
    • 2018
  • In wireless communication, efficient spectrum usage is an issue that has been an attractive research area for many technologies. Recently new technologies innovations allow compact radios to transmit with power efficient communication over very long distances. For example, Low-Power Wide Area Networks (LPWANs) are an attractive emerging platform to connect the Internet-of-Things (IoT). Especially, LoRa is one of LPWAN technologies and considered as an infrastructure solution for IoT. End-devices use LoRa protocol across a single wireless hop to communicate to gateway(s) connected to the internet which acts as a bridge and relays message between these LoRa end-devices to a central network server. The use of the (ISM) spectrum sharing for such long-range networking motivates us to implement spectrum sensing testbed for cognitive radio network based on LoRa and GNU radio. In cognitive radio (CR), secondary users (SUs) are able to sense and use this information to opportunistically access the licensed spectrum band in absence of the primary users (PUs). In general, PUs have not been very receptive of the idea of opportunistic spectrum sharing. That is, CR will harmfully interfere with operations of PUs. Subsequently, there is a need for experimenting with different techniques in a real system. In this paper, we implemented spectrum sensing for cognitive radio networks based on LoRa and GNU Radio, and further analyzed corresponding performances of the implemented systems. The implementation is done using Microchip LoRa evolution kits, USRPs, and GNU radio.

Spectrum Sensing Technique in Cognitive Radio Systems Based on Ad-Hoc Networks (애드 혹 네트워크기반 무선인지 시스템에서 스펙트럼 센싱)

  • Lee, So-Young;Kim, Eun-Cheol;Cha, Jae-Sang;Hwang, Sung-Ho;Min, Joon-Ki;Kim, Jin-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.5
    • /
    • pp.121-127
    • /
    • 2009
  • Wireless devices can communicate between each other without existing infrastructure in mobile Ad-hod network. Ad hoc networks can be used under difficult conditions, where it is difficult to construct infrastructures, such as shadowing areas, disaster areas, war area, and so on. In order to support to considerable and various wireless services, more spectrum resources are needed. However, efficient utilization of the frequency resource is difficult because of spectrum scarcity and the conventional frequency regulation. Ad-hoc networks employing cognitive radio (CR) system that guarantee high spectrum utilization provide effective way to increase the network capacity. In this paper, we simulate and compare the performance of conventional single and cooperative spectrum sensing with CR system using ad-hoc networks. And we demonstrate performance improvement by analyzing the system performance.

  • PDF

Throughput Maximization for a Primary User with Cognitive Radio and Energy Harvesting Functions

  • Nguyen, Thanh-Tung;Koo, Insoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3075-3093
    • /
    • 2014
  • In this paper, we consider an advanced wireless user, called primary-secondary user (PSU) who is capable of harvesting renewable energy and connecting to both the primary network and cognitive radio networks simultaneously. Recently, energy harvesting has received a great deal of attention from the research community and is a promising approach for maintaining long lifetime of users. On the other hand, the cognitive radio function allows the wireless user to access other primary networks in an opportunistic manner as secondary users in order to receive more throughput in the current time slot. Subsequently, in the paper we propose the channel access policy for a PSU with consideration of the energy harvesting, based on a Partially Observable Markov decision process (POMDP) in which the optimal action from the action set will be selected to maximize expected long-term throughput. The simulation results show that the proposed POMDP-based channel access scheme improves the throughput of PSU, but it requires more computations to make an action decision regarding channel access.

Energy Efficient Sequential Sensing in Multi-User Cognitive Ad Hoc Networks: A Consideration of an ADC Device

  • Gan, Xiaoying;Xu, Miao;Li, He
    • Journal of Communications and Networks
    • /
    • v.14 no.2
    • /
    • pp.188-194
    • /
    • 2012
  • Cognitive networks (CNs) are capable of enabling dynamic spectrum allocation, and thus constitute a promising technology for future wireless communication. Whereas, the implementation of CN will lead to the requirement of an increased energy-arrival rate, which is a significant parameter in energy harvesting design of a cognitive user (CU) device. A well-designed spectrum-sensing scheme will lower the energy-arrival rate that is required and enable CNs to self-sustain, which will also help alleviate global warming. In this paper, spectrum sensing in a multi-user cognitive ad hoc network with a wide-band spectrum is considered. Based on the prospective spectrum sensing, we classify CN operation into two modes: Distributed and centralized. In a distributed network, each CU conducts spectrum sensing for its own data transmission, while in a centralized network, there is only one cognitive cluster header which performs spectrum sensing and broadcasts its sensing results to other CUs. Thus, a wide-band spectrum that is divided into multiple sub-channels can be sensed simultaneously in a distributed manner or sequentially in a centralized manner. We consider the energy consumption for spectrum sensing only of an analog-to-digital convertor (ADC). By formulating energy consumption for spectrum sensing in terms of the sub-channel sampling rate and whole-band sensing time, the sampling rate and whole-band sensing time that are optimal for minimizing the total energy consumption within sensing reliability constraints are obtained. A power dissipation model of an ADC, which plays an important role in formulating the energy efficiency problem, is presented. Using AD9051 as an ADC example, our numerical results show that the optimal sensing parameters will achieve a reduction in the energy-arrival rate of up to 97.7% and 50% in a distributed and a centralized network, respectively, when comparing the optimal and worst-case energy consumption for given system settings.

A Study of Security Issues of Cognitive Radio Network (인지 무선통신 네트워크의 보안 문제 연구)

  • Moon, Sangook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.662-665
    • /
    • 2011
  • The cognitive radio (CR) network has been studied in the form of open source by vast number of communities, and the potential expectation is very high since the CR is based on reprogrammable platform. However, this characteristics of open-source software take high risk as well. As the peer-to-peer software has been abused, so high is the chance that the CR network can be abused public wide. Consequently, the benefit from the study of next-generation wireless network can be at risk because of the negative impact of violation of communication law or abusing the CR. In this contribution, we analyze the issues and the problems of the CR and discuss an efficient measure against security attacks.

  • PDF